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Abstract— The paper presents results on factorization of ma-
trices describing objects and their fuzzy attributes. Entries of
the matrices are truth degrees, e.g., numbers from the real unit
interval [0, 1]. In general, matrix entries can be elements from
a complete residuated lattice. We propose a novel method to
factorize such matrices which is based on using so-called formal
concepts as factors. To factorize an n × m object-attribute
matrix I means to decompose I into a product A ◦ B of an
n × k object-factor matrix A and an k × m factor-attribute
matrix B. In addition, we want the number k of factors as
small as possible. The product ◦ we consider in this paper is the
well-known product corresponding to max-t-norm composition of
fuzzy relations. We focus on theoretical analysis of the method
we propose. We prove several results, e.g., a result which says
that our method provides the best factorization in that it leads
to the smallest number of factors. In addition, we present an
illustrative example.

I. PROBLEM SETTING

Factor analysis (FA) originated with Spearman’s monumen-
tal development of psychological theory involving a single
general factor and a number of specific factors [12]. Nowa-
days, FA is a well-established branch of statistical data analysis
with many applications in numerous fields and with support
in several software packages. According to Harman [9, p. 4],
“The principal concern of factor analysis is the resolution
of a set of variables linearly in terms of (usually) a small
number of categories or ‘factors’. . . . A satisfactory solution
will yield factors which convey all the essential information
of the original set of variables. Thus, the chief aim is to attain
scientific parsimony or economy of description.” Traditional
FA attempts to decompose an input matrix I of dimension
n×m into a product of matrices A of dimension n×k and B
of dimension k×m such that k is less than m. I represents n
objects (rows) and their m variables (columns), A represents
description of the objects in terms of new (discovered) k
factors and B represents the relationship of the factors to the
original variables. Traditionally, the matrix product is the usual
product as used in linear algebra. Decades ago, a problem
of so-called Boolean factor analysis has been formulated, in
which the matrix I is a Boolean matrix (contains 0’s and 1’s).
By and large, the attempts to factorize Boolean matrices using
traditional methods of FA failed. New methods have been

studied to decompose a Boolean matrix into a Boolean product
of two Boolean matrices, A and B. Most of these approaches
were heuristics, providing no guarantee that decompositions
be found. In [5], we proved that there exists an optimal way
to factorize Boolean matrices. Namely, that one can use so-
called formal concepts as the factors. In [3], we reformulated
the problem of Boolean FA by generalizing it in that the input
matrix may contain degrees such as 0.3, 0.6, etc., in addition
to 0 and 1. We studied possibilities to factorize I by means of
various fuzzy relational products and found optimal solutions
in terms of various types of formal concepts associated to the
input matrix I . In this paper, we focus in detail on the ◦-
decomposition (max-t-norm decomposition) of matrix I . Our
method heavily relies on an insight provided by results on
fuzzy concept lattices and formal concept analysis of data
with fuzzy attributes [1], [2], [4], and also [6]. In order to
decompose I into A ◦ B, we employ fuzzy concept lattices
with hedges [4]. In particular, we present results which show
that in order to decompose I into A ◦ B, we can use formal
concepts of the fuzzy concept lattice with hedges associated
to I . Equation

FACTORS = FORMAL CONCEPTS (in sense of FCA)

is the central theme of our approach. The main result of the
present paper is optimality of our approach: We prove that
for any decomposition of I into A ◦B with k factors there is
a decomposition of I into A′ ◦ B′ with k′ ≤ k with formal
concepts as factors. Moreover, since formal concepts are easily
interpretable, interpretability of factors is another advantage of
our approach. In addition to that, the theoretical insight directly
leads to an approach to find formal concept which can be used
as factors. This approach is outlined in our paper, too.

In Section II, we provide a survey on fuzzy sets and
fuzzy logic and on formal concept analysis of data with
fuzzy attributes. In Section III, we present a detailed problem
formulation. Section IV describes our main results. Section
V contains illustrative examples. In Section VI, we present
conclusions, remarks, and an outline of future research.
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II. PRELIMINARIES

a) Fuzzy sets and fuzzy logic: We assume that the reader
is familiar with basic principles of fuzzy logic. We refer to
[10] for general overview of fuzzy sets and fuzzy logic and to
[1], [7] for the setting we use in this paper. We use complete
residuated lattices as structures of truth degrees. A complete
residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such
that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being
the least and greatest element of L, respectively; 〈L,⊗, 1〉
is a commutative monoid; ⊗ and → satisfy the adjointness
property, i.e. a⊗ b ≤ c iff a ≤ b → c. A truth-stressing hedge
on L (hedge, for short) is a unary operation ∗ on L satisfying
(i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ =
a∗, for all a, b ∈ L. Elements a of L are called truth degrees.
⊗ and → are (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Hedge ∗ is a (truth function of) logical
connective “very true”, see [7], [8] for details. A common
choice of L is a structure with L = [0, 1] (unit interval), ∧ and
∨ being minimum and maximum, ⊗ being a left-continuous t-
norm, such as the Łukasiewicz, product, or minimum, with the
corresponding →, see [7]. Another common choice is to take
a finite chain L with appropriate truth functions such as the
Łukasiewicz or minimum. A special case of a (finite) complete
residuated lattice is a two-element Boolean algebra (structure
of truth degrees of classical logic). Two boundary cases of
hedges are (i) identity, i.e. a∗ = a (a ∈ L); (ii) globalization:
a∗ = 1 if a = 1, a∗ = 0 else. Given a structure L of truth
degrees, we define usual notions: an L-set (fuzzy set) A in
universe U is a mapping A : U → L, A(u) being interpreted
as “the degree to which u belongs to A”. Let LU denote the
collection of all L-sets in U . The operations with L-sets are
defined componentwise. For instance, intersection of L-sets
A,B ∈ LU is an L-set A ∩ B in U such that (A ∩ B)(u) =
A(u) ∧ B(u) (u ∈ U ). For fuzzy sets A,B ∈ LU , we put
A ⊆ B (A is contains in B) iff, for each u ∈ U , A(u) ≤ B(u).
In the following we use well-known properties of residuated
lattices and fuzzy structures which can be found in [1], [7].

b) Fuzzy concept lattices with hedges: In this section, we
summarize basic notions of formal concept analysis (FCA) of
data with fuzzy attributes. FCA is a method of exploratory data
analysis. The input data consists of a data table describing a
relationship between objects and attributes. The output of FCA
consists of a hierarchically ordered collection of clusters. The
clusters are called formal concepts and can be seen as natural
concepts well-understandable and interpretable by humans. We
refer the reader to [6] for FCA with binary attributes and to
[1], [2], [4], [11] for FCA of data with fuzzy attributes.

A data table with fuzzy attributes can be represented by a
triplet 〈X,Y, I〉 where X and Y are non-empty sets of objects
(table rows) and attributes (table columns), and I : X×Y → L
is a fuzzy relation with I(x, y) representing the degree to
which object x ∈ X has attribute y ∈ Y (table entry
corresponding to row x and column y). Let ∗X and ∗Y be
hedges on L. For A ∈ LX , B ∈ LY (i.e. A is a fuzzy set of
objects, B is a fuzzy set of attributes), we define fuzzy sets

A↑ ∈ LY (fuzzy set of attributes), B↓ ∈ LX (fuzzy set of
objects) by

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
, (1)

B↓(x) =
∧

y∈Y

(
B(y)∗Y → I(x, y)

)
. (2)

We put

B(X∗X , Y ∗Y , I) = {〈A,B〉 ∈ LX× LY |A↑ = B, B↓ = A}
and define a partial order ≤ on B(X∗X , Y ∗Y , I) by
〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff B2 ⊆ B1;
both ways are equivalent). Operators ↓, ↑ form so-called Ga-
lois connection with hedges, see [4]. 〈B(X∗X , Y ∗Y , I),≤
〉 is called a fuzzy concept lattice associated to 〈X,Y, I〉.
Elements 〈A,B〉 of B(X∗X , Y ∗Y , I) are naturally interpreted
as concepts (clusters) hidden in the input data represented
by I . Namely, A↑ = B and B↓ = A say that B is the
collection of all attributes shared by all objects from A,
and A is the collection of all objects sharing all attributes
from B. Note that these conditions represent exactly the
definition of a concept as developed in the so-called Port-
Royal logic; A and B are called the extent and the intent of the
concept 〈A,B〉, respectively, and represent the collection of
all objects and all attributes covered by the particular concept.
Furthermore, ≤ models the natural subconcept-superconcept
hierarchy—concept 〈A1, B1〉 is a subconcept of 〈A2, B2〉 iff
each object from A1 belongs to A2 (dually for attributes).

III. PROBLEM FORMULATION IN DETAIL

For our purpose, consider the following (somewhat simpli-
fied) formulation of the problem of factor analysis. Suppose
Z is an n × m real-valued matrix with entries Zij ∈ R

(1 ≤ i ≤ n, 1 ≤ j ≤ m) describing the value of j-th variable
on i-th object. The aim is to find a collection of other variables
f1, . . . , fk, so called factors, such that the original variables
can be approximately expressed by a linear combination of
the factors. In more detail, the aim is to find an n× k matrix
A and a k × m matrix F such that

Z ≈ A ◦ F,

i.e. Z is approximately equal to A ◦ F (◦ is the usual matrix
product). Each A’s entry Ail ∈ R, called a loading, represents
value of l-th factor on i-th object; each F ’s entry Flj ∈ R

represents how j-th variable is manifested in l-th factor. An
important feature of the classical model of factor analysis is
its linearity: Z is (approximately equal to) the ordinary matrix
product of A and F , i.e.

Zij ≈
k∑

l=1

Ail · Flj ,

i.e. each original variable is considered as a linear combination
of new variables (factors). Moreover, one requires that the
number of factors is smaller than the number of the original
variables, i.e. k < m. Then, the collection of all factors can
be considered as a collection of a relatively small number
of variables representing latent features such that the directly
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observable features can be expressed in terms of the latent
features. Making the latent features explicit is advantageous.
First, the dimension of the model reduces (the objects are
represented in a k-dimensional space rather than in an m-
dimensional one). Second, the factors can be thought of as
representing more fundamental (explanatory) features than
those represented by the original variables.

Needless to say, the general idea of factor analysis, i.e.
finding a relatively small set of latent features, is independent
of the linearity of the model. That is to say, the original
variables can be expressed by means of the factors also in
other ways than by a linear combination. Our formulation of
the problem of relational factor analysis follows. The input
data is an n × m matrix I with entries Iij (1 ≤ i ≤ n,
1 ≤ j ≤ m) being elements of a support set L of a complete
residuated lattice L. We call such matrices L-valued matrices.
Thus, in particular, I can be a [0, 1]-valued matrix such as

 1 .9 0 .2 .1
1 .9 .2 .2 .8
.8 .8 .9 .9 .1
1 .2 .1 .1 1


.

I describes a relationship between n objects and m attributes.
Each entry Iij (1 ≤ i ≤ n, 1 ≤ j ≤ m) represents a value to
which object i has attribute j (level of expression of attribute
j on object i). The aim is to find an n× k L-valued matrix A
(i.e., Aik ∈ L) and a k×m L-valued matrix B (i.e., Bkj ∈ L)
such that

I ≈ A ◦ B,

where ≈ denotes “equal” (or “approximately equal”) and ◦
denotes a ◦-composition based on the multiplication ⊗ of L,
i.e. ⊗ is a (truth function of) “fuzzy conjunction”. In our paper,
we consider exact decomposition of I , i.e. we are looking for
I = A ◦ B. That is, we want

Iij =
k∨

l=1

Aik ⊗ Bkj (3)

where
∨

denotes logical “or” (truth function of disjunction),
i.e.

∨
denotes supremum in L. Note also that

∨
is just

maximum if truth degrees from L are linearly ordered which
is the case, e.g., if we consider [0, 1]-valued matrices. For
example, if we consider min as our “fuzzy conjunction” (in
other words, our structure L of truth degrees forms the well-
known Gödel chain), the above matrix can be decomposed
by 

 1 .9 0 .2 .1
1 .9 .2 .2 .8
.8 .8 .9 .9 .1
1 .2 .1 .1 1


 =


 1 0 0

1 .2 .8
.8 .9 .1
0 .1 1


 ◦

( 1 .9 0 .2 .1
.2 .2 1 1 0
1 .2 .1 .1 1

)
.

Note that if L = {0, 1}, which is a particular case of our set-
ting, our problem becomes a well-known problem of Boolean
factor analysis. In this case, one is looking for decompositions
of Boolean matrices such as

 1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


 =


 1 0 0

1 0 1
1 1 0
0 0 1


 ◦

( 1 1 0 0 0
0 0 1 1 0
1 0 0 0 1

)
.

Such a decomposition can be interpreted as follows. In ad-
dition to the n original objects and their m original binary
attributes, the decomposition employs k new factors. Matrices
A and B represent relationships between objects and factors
and between factors and the original attributes, respectively.
In particular, Ail ∈ L represents a degree to which i-th object
has l-th factor, i.e. a degree to which l-th factor is manifested
on i-th object; Blj ∈ L represents a degree to which l-th
factor subsumes j-th original attribute, i.e. a degree to which
j-th variable is manifested on l-th factor. Therefore, instead
of the classical factor analysis, relational factor analysis is
suitable for presence/absence data with degrees of expression
of attributes on objects. The factors, as in case of classical
factor analysis, can be seen as representing latent features
using which one can express both the original objects and
the original (directly observable) attributes.

IV. FORMAL CONCEPTS AS OPTIMAL FACTORS

This section presents our approach to factorization of L-
valued matrices. Conceptually, the approach is motivated by
our earlier papers [3], [5]. We try to utilize formal concepts
of particular concept lattices as factors. That is, we attempt to
employ as factors certain formal concepts of concept lattices.
The concept lattice we consider is a concept lattice associated
to the input matrix I . Needless to say, with a slight abuse of
notation, matrix I can be obviously identified with a data table
〈X,Y, I〉 with fuzzy attributes, with a set X = {x1, . . . , xm}
of objects corresponding to matrix rows and a set Y =
{y1, . . . , yn} of attributes corresponding to matrix columns.
That is, I(xi, yj) coincides with Iij and, as a consequence, we
do not distinguish between matrix I and data table 〈X,Y, I〉.
Therefore, we can consider a concept lattice associated to
〈X,Y, I〉. In this paper, we consider concept lattices which are
particular concept lattices with hedges, see Section II. Namely,
we consider B(X∗X , Y ∗Y , I) where ∗X is identity and ∗Y is
an arbitrary hedge. We denote such concept lattices simply by
B(X,Y ∗Y , I). This approach covers, as a particular case, the
approach described in [3], where we discussed various types of
decompositions of I including the ◦-decomposition for which
we proposed to use ordinary fuzzy concept lattices B(X,Y, I),
i.e. B(X∗X , Y ∗Y , I) with both ∗X and ∗Y being identities.

The reason for considering B(X,Y ∗Y , I) in this paper is
the following. Hedge ∗Y enables us to select only particular
formal concepts which we want to use as factor concepts. For
instance, with ∗Y being globalization, every concept 〈Ai, Bi〉
of B(X,Y ∗Y , I) can be interpreted as consisting of a fuzzy set
Ai of objects and a (ordinary) set B∗Y = {y |B(y) = 1} of
attributes. Such concepts tend to be more easily interpretable
by users, see [4]. Moreover, the number of such concepts
can be significantly smaller than the number of “unrestricted”
concepts in B(X,Y, I). This results into a faster compu-
tation of factor concepts. In addition to that, we will see
that B(X,Y ∗Y , I) provides us with optimal factor concepts
restricted by requirement involving ∗Y .

Up to now, we did not say what we mean by “using formal
concepts as factors”. This is what we are going to explain now.
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Suppose F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X,Y ∗Y , I) is a
set of formal concepts of B(X,Y ∗Y , I). We define an n × k
matrix AF and an k × m matrix BF by

(AF )il = Al(xi)

and
(BF )lj = Bl(yj).

That is, the l-th column of AF consists of membership degrees
Al(xi) of the extent of l-th concept 〈Al, Bl〉 of F , and the l-th
row of BF consists of membership degrees Bl(yj) of the intent
of l-th concept 〈Al, Bl〉 of F . Our aim is to find, given matrix
I , a small set F ⊆ B(X,Y ∗Y , I) such that I = AF ◦ BF .

Recall that B(X,Y, I) denotes B(X∗X , Y ∗Y , I) with both
∗X and ∗Y being identities. Moreover, denote by fix(∗Y ) the
set of fixed points of ∗Y , i.e.

fix(∗Y ) = {a ∈ L | a∗Y = a}.
We need the following theorem.

Theorem 1 ([4]): B(X,Y ∗Y , I) = {〈A,B〉 ∈ B(X,Y, I) |
〈A,B〉 = 〈D⇓,D⇓⇑〉 for D ∈ (fix(∗Y ))Y }.

Here, ⇓ and ⇑ are the arrow operators “without hedges”, i.e.
defined by A⇑(y) =

∧
x∈X(A(x) → I(x, y)) and B⇓(y) =∧

y∈Y (B(y) → I(x, y)). The following assertion provides us
with the first insight.

Lemma 2: For 〈X,Y, I〉, we have

I(x, y) =
∨

〈A,B〉∈B(X,Y ∗Y ,I)

A(x) ⊗ B(y).

Proof: Use Theorem 1 and direct computation. We omit
details due to lack of space.

According to Lemma 2, I can be reconstructed from
B(X,Y ∗Y , I). The way I is being reconstructed is this. For
each formal concept 〈A,B〉 from B(X,Y ∗Y , I), one considers
the rectangular L-relation A⊗B defined by (A⊗B)(x, y) =
A(x) ⊗ B(y). Lemma 2 says that I results by adding all
of these rectangular relations together by means of taking
suprema (maxima if, e.g. L = [0, 1]). Now, any pair 〈A,B〉 of
A ∈ LX and B ∈ LY can be considered as a rectangle with
A ⊗ B defined as above being the corresponding rectangular
L-relation. For rectangles 〈A1, B1〉 and 〈A2, B2〉 we can put
〈A1, B1〉 � 〈A2, B2〉 if for each x ∈ X , y ∈ Y we have
A1(x) ≤ A2(x) and B1(y) ≤ B2(y). The following lemma
shows that formal concepts from B(X,Y ∗Y , I) correspond to
certain maximal rectangles with the corresponding rectangular
L-relation contained in I .

Lemma 3: A pair 〈A,B〉 of A ∈ LX and B ∈ LY is
a formal concept in B(X,Y ∗Y , I) iff 〈A,B〉 is a maximal
rectangle such that A ⊗ B ⊆ I and A = (B∗Y

)⇓.
Proof: Similar to the proof of an analogous statement

for B(X,Y, I), see [1]. We omit details.

Note that the additional condition requiring A = (B∗Y

)⇓

is automatically satisfied in case ∗Y is identity. Namely, in
this case, it follows from the fact that 〈A,B〉 is a maximal

rectangle such that A ⊗ B ⊆ I . If ∗Y is globalization, the
additional condition says that A(x) =

∧
B(y)=1 I(x, y). In

general, the condition can be interpreted as follows. Even if we
consider, instead of B, the fuzzy set B∗Y , i.e. the largest fuzzy
set which is contained in B and uses as membership degrees
only the restricted degrees from fix(∗Y ), the collection A of
objects which share all attributes from B∗Y does not change.

Definition 1: Call I k-factorizable if I = A ◦ B for some
n × k L-valued matrix A and some k × m L-valued matrix
B.

If, moreover, for every l = 1, . . . , k, Blj ∈ fix(∗Y ), we say
that I is k-∗Y -factorizable.

Therefore, I is k-∗Y -factorizable iff I can be decomposed
into A ◦ B where A is an L-valued matrix and B is a matrix
with values restricted to fixpoints of ∗Y . This means that if
∗Y is identity, B is an L-valued matrix (no restriction), if
∗Y is globalization, B is an {0, 1}-valued matrix (Boolean
matrix). The condition of k-∗Y -factorizability is reasonable
because one might want to have a crisp relationship between
factors and original attributes or to see if it is possible to have
such factors. Symmetrically, one might want to have a crisp
relationship between objects and factors.

Definition 2: An n × m L-valued matrix I is called ∗Y -
concept-factorizable if there is a set F of formal concepts of
B(X,Y ∗Y , I) such that for the corresponding matrices AF
and BF we have I = AF ◦ BF .

Therefore, if I is ∗Y -concept-factorizable with F , we call
the formal concepts of F factors (or factor concepts).

The following theorem shows that each I is concept-
factorizable. In fact, one can take F = B(X,Y ∗Y , I), i.e.
the set of all formal concepts of B(X,Y ∗Y , I).

Theorem 4 (universality of ∗Y -concept-factorizability):
For F = B(X,Y ∗Y , I) we have I = AF ◦ BF . Therefore,
every binary matrix I is ∗Y -concept-factorizable.

Proof: The assertion is a direct consequence of Lemma
2. We omit details.

Although Theorem 4 gives a way to factorize I , the obvious
disadvantage is that the number |B(X,Y ∗Y , I)| of all concepts
of B(X,Y ∗Y , I) (and thus the number of factors suggested by
Theorem 4) is usually much larger than m, i.e. than the number
of original attributes. It can even happen to be infinite. The
next theorem shows that m, in fact, serves as the upper bound
of the number of factor-concepts we can use. Consider the
following set of formal concepts:

A(X,Y ∗Y , I) = {〈{1/yj}↓, {1/yj}↓↑〉 | 1 ≤ j ≤ m} (4)

Formal concepts from A(X,Y ∗Y , I) are called attribute con-
cepts. Using results from [4], it can be shown that elements of
A(X,Y ∗Y , I) are indeed formal concepts from B(X,Y ∗Y , I).
The following theorem shows that A(X,Y ∗Y , I) can be taken
as a set of factor-concepts.
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Theorem 5 (factorizability by attribute concepts): Let F =
A(X,Y ∗Y , I). Then I is concept-factorizable with F being
the set of factor-concepts.

Proof: The proof follows from the fact that for every
〈A,B〉 ∈ A(X,Y ∗Y , I) we have A(xi) = I(xi, yj) and
B(yj) = 1. The rest is routine and we omit details.

We are now going to show our main results, namely, the
optimality of ∗Y -concept-factorizability.

Theorem 6 (optimality of ∗Y -concept-factorizability): Let
I be k-∗Y -factorizable. Then there is F ⊆ B(X,Y ∗Y , I)
such that |F| ≤ k and I is ∗Y -concept-factorizable using F
as the set of factor-concepts.

Proof: Sketch (details to be presented in full version):
Let I = A◦B such that A and B are n×k and k×m L-valued
matrices satisfying Blj ∈ fix(∗Y ), i.e. I is k-∗Y -factorizable
using A and B. One can see that for every l = 1, . . . , k, the
pair 〈Ai, Bj〉 consisting of L-sets Ai and Bi corresponding
to l-th column of A and l-th row of B are rectangles with
the corresponding rectangular L-relation Ai⊗Bj contained in
I . Furthermore, it can be shown that 〈Ai, Bj〉 is contained
in some maximal rectangle 〈Ci,Dj〉 which satisfies Ci =
(D∗Y

j )⇓. According to Lemma 2, 〈Ci,Dj〉 is a formal concept
from B(X,Y ∗Y , I). If we denote by F the collection of all
such formal concepts 〈Ci,Dj〉, it is clear that |F| ≤ k and
that AF ◦ BF = I . This proves the theorem.

Remark 7: Note that, under the notation from the proof
of Theorem 6, we might have |F| < k (the number of
factor-concepts may be strictly smaller than the number of
the original factors). Namely, it may happen that two different
rectangles 〈Al, Bl〉 and 〈Al′ , Bl′〉 are contained in the same
maximal rectangle, i.e. one can take 〈Cl,Dl〉 = 〈Cl′ ,Dl′〉.

In fact, as shown by Theorem 6, if the number of factors
is taken as a quality of factorization, ∗Y -concept-factorization
is the best way to factorize if we restrict our attention to ∗Y -
factorizability. Obviously, with ∗Y being identity, there is no
restriction involved and we obtain, as a corollary, the theorem
from [3] saying that formal concepts from B(X,Y, I) are
optimal factors.

V. EXAMPLES

In this section, we present illustrative examples. Our main
aim is to illustrate the notions and results introduced in
previous sections.

Take L = { n
10 | 0 ≤ n ≤ 10} equipped with Łukasiewicz

operations and identities for hedges as our structure of truth
degrees and consider the following input L-valued matrix:

I =




0.9 0.3 0.5 0.8 0.9 0.5
0.8 0.3 0.1 0.8 0.5 0.5
0.5 0.2 0.1 0.4 0.5 0.1
0.2 0.0 0.0 0.2 0.0 0.0
0.6 0.0 0.2 0.3 0.6 0.0


 .

The input matrix I is 3-factorizable. Indeed, we have I = A◦B

for the following L-valued matrices:

A =




1.0 0.8 0.0
0.4 0.8 0.7
0.6 0.4 0.6
0.0 0.2 0.4
0.7 0.3 0.0


 , B =

( 0.9 0.3 0.5 0.3 0.9 0.0
1.0 0.4 0.3 1.0 0.7 0.7
0.1 0.6 0.2 0.4 0.0 0.0

)
.

Matrices A and B describing relationships between object ×
factors and factors × attributes induce three matrices F1, F2,
and F3 such that, for each l ∈ 1, 2, 3, (Fl)ij = Ail ⊗ Blj :

F1 =




0.9 0.3 0.5 0.3 0.9 0.0
0.3 0.0 0.0 0.0 0.3 0.0
0.5 0.0 0.1 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.2 0.0 0.6 0.0


 ,

F2 =




0.8 0.2 0.1 0.8 0.5 0.5
0.8 0.2 0.1 0.8 0.5 0.5
0.4 0.0 0.0 0.4 0.1 0.1
0.2 0.0 0.0 0.2 0.0 0.0
0.3 0.0 0.0 0.3 0.0 0.0


 ,

F3 =




0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.3 0.0 0.1 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0


 .

The original matrix I is in fact a union of F1, F2, and F3, cf.
Lemma 2. Matrices F1, F2, and F3 represent rectangles present
in the original matrix I . These rectangles are, however, not
maximal in sense of FCA, i.e. they do not correspond to formal
concepts in I . Note that B(X,Y, I) induced by I contains 436
concepts. Matrices F1, F2, and F3 representing rectangles in
I can be extended to maximal rectangles representing formal
concepts. For instance, we can take the following set of three
formal concepts which will play the role of factor-concepts:

F = {〈{1.0/x1,
0.6/x2,

0.6/x3,
0.1/x4,

0.7/x5},
{0.9/y1,

0.3/y2,
0.5/y3,

0.6/y4,
0.9/y5,

0.3/y6}〉,
〈{0.8/x1,

0.8/x2,
0.4/x3,

0.2/x4,
0.3/x5},

{1.0/y1,
0.5/y2,

0.3/y3,
1.0/y4,

0.7/y5,
0.7/y6}〉,

〈{0.7/x1,
0.7/x2,

0.6/x3,
0.4/x4,

0.4/x5},
{0.8/y1,

0.6/y2,
0.4/y3,

0.8/y4,
0.6/y5,

0.5/y6}〉}.

The concepts in F correspond to the following maximal
rectangles which extend the rectangles F1, F2, and F3:

C1 =




0.9 0.3 0.5 0.6 0.9 0.3
0.5 0.0 0.1 0.2 0.5 0.0
0.5 0.0 0.1 0.2 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.2 0.3 0.6 0.0


 ,

C2 =




0.8 0.3 0.1 0.8 0.5 0.5
0.8 0.3 0.1 0.8 0.5 0.5
0.4 0.0 0.0 0.4 0.1 0.1
0.2 0.0 0.0 0.2 0.0 0.0
0.3 0.0 0.0 0.3 0.0 0.0


 ,

C3 =




0.5 0.3 0.1 0.5 0.3 0.2
0.5 0.3 0.1 0.5 0.3 0.2
0.4 0.2 0.0 0.4 0.2 0.1
0.2 0.0 0.0 0.2 0.0 0.0
0.2 0.0 0.0 0.2 0.0 0.0


 .
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It is easily seen that I is a union of C1, C2, and C3. The
matrices AF and BF induced by F are the following:

AF =




1.0 0.8 0.7
0.6 0.8 0.7
0.6 0.4 0.6
0.1 0.2 0.4
0.7 0.3 0.4


, BF =

( 0.9 0.3 0.5 0.6 0.9 0.3
1.0 0.5 0.3 1.0 0.7 0.7
0.8 0.6 0.4 0.8 0.6 0.5

)
,

and due to Theorem 6, we have I = AF ◦ BF .

VI. FURTHER REMARKS AND FURTHER RESEARCH

Future research will focus on the following topics:

• Approximate factorizability. Extension of the results so
that one requires a weaker condition I approximately
equals AF ◦ BF .

• Further criteria of what a “good set of factors” means.
In addition to the number of factors, one may consider
further criteria such as the generality of formal concepts
used as factors or independence of formal concepts.

• Algorithms. A further study of algorithms is crucial for
efficient implementation of our approach. Research will
focus on studies of many-valued variants of set-covering
problem, on utilizing theoretical insight provided by
available results on fuzzy concept lattices, as well as on
heuristic approaches.

• Comparison with classical and non-linear factor analysis.
Namely, in a particular case when the entries of matrix I
are numbers from [0, 1], one can try to employ classical
factor analysis as well as methods of non-linear factor
analysis. Both experimental and theoretical comparison
are needed here.
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