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Abstract. Presented is preliminary study of the role of data structures
in algorithms for formal concept analysis. Studied is performance of se-
lected algorithms in dependence on chosen data structures and size and
density of input object-attribute data. The observations made in the
paper can be seen as guidelines on how to select data structures for im-
plementing algorithms for formal concept analysis.
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1 Introduction

Formal concept analysis (FCA) [17] is a method of qualitative data analysis
with a broad outreach to other analytical disciplines. Formal concepts, i.e. max-
imal rectangular submatrices of Boolean object-attribute matrices, which are
the basic patterns studied by formal concept analysis, are important for various
data-mining and decision-making tasks. For instance, formal concepts can be
used to obtain nonredundant association rules [18] and minimal factorizations
of Boolean matrices [2]. Recently, it has been shown in [1] that formal concepts
can be used to construct decision trees. From the computational point of view,
these applications of FCA depend on algorithms for computing all formal con-
cepts (possibly satisfying additional constraints) given an input data set. It is
therefore important to pay attention to algorithms for FCA especially in case of
large input data where the performance of algorithms becomes a crucial issue.

In this paper we focus on the data structures used in algorithms for computing
formal concepts. Selection of the appropriate data structure has an important
impact virtually on any algorithm and the decision of which structure is the
optimal one for given algorithm is often uneasy. Usually, the decision depends
on many factors, especially on the data being processed. Such decision has to
be done wisely since selection of an inappropriate structure may lead to a poor
performance or to an excessive use of resources in real programs. Algorithms
for computing formal concepts are not an exception. Moreover, the situation
is complicated since algorithms are usually described in pseudocode that is a
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language combining (vague) human and (formal) programming languages. This
gives certain freedom to a programmer but with this freedom is tightly coupled
a big piece of responsibility. For example, if a description of an algorithm con-
tains the term “store B ∩ C into A”, from the point of view of the algorithm
description, the statement is clear and sufficiently descriptive. The term says:
“store intersection of sets B and C into set A”. On the other hand, from the
implementation point of view, such description is ambiguous because it does not
provide any information on how such intersection should be computed and how
the sets should be represented.

Interestingly, the data representation issues are almost neglected in literature
on FCA. The well-known comparison study [11] of FCA algorithms mentions the
need to study the influence of data structures on practical performance of FCA
algorithms but it does not pay attention to that particular issue. This paper
should be considered a first step towards this direction. Recall that the limiting
factor of computing all formal concepts is that the problem is #P -complete [8].
The theoretical complexity of algorithms for FCA is usually expressed in terms
of time delay [7] and all commonly used FCA algorithms have polynomial time
delay [8]. Still, the asymptotic complexity does not say which algorithm is faster
as many different algorithms belong to the same class. With various data struc-
tures, the problem becomes even more complicated. Therefore, there is a need
for experimental evaluation which may help users decide which FCA algorithm
should be used for particular type of data, cf. [11]. In this paper, we try to answer
a related question: “Which data representation should be chosen for particular
type of data?”

The paper is organized as follows. Section 2 presents a survey of notions of
FCA and used algorithms. Section 3 describes used data structures and set-
theoretical operations on these data structures. Finally, Section 4 presents ex-
perimental evaluation showing the impact of data structures on the performance
and concluding remarks.

2 Formal Concept Analysis

In this section we recall basic notions of the formal concept analysis (FCA).
More details can be found in monographs [6] and [3].

2.1 Survey of Basic Notions

FCA deals with binary data tables describing relationship between objects and
attributes, respectively. The input for FCA is a data table with rows correspond-
ing to objects, columns corresponding to attributes (or features), and table en-
tries being 1’s and 0’s, indicating whether an object given by row has or does
not have an attribute given by column. The input is formalized by a binary re-
lation I ⊆ X × Y , 〈x, y〉 ∈ I meaning that object x has attribute y, and I being
called a formal context [6]. Each formal context I ⊆ X × Y induces a couple of
concept-forming operators ↑ and ↓ defined, for each A ⊆ X and B ⊆ Y , by
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A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Operators ↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form a so-called
Galois connection [6]. By definition (1), A↑ is a set of all attributes shared by all
objects from A and, by (2), B↓ is a set of all objects sharing all attributes from
B. A pair 〈A, B〉 where A ⊆ X , B ⊆ Y , A↑ = B, and B↓ = A, is called a formal
concept (in I ⊆ X × Y ). Formal concepts can be seen as particular clusters
hidden in the data. Namely, if 〈A, B〉 is a formal concept, A (called an extent
of 〈A, B〉) is the set all objects sharing all attributes from B and, conversely,
B (called an intent of 〈A, B〉) is the set of all attributes shared by all objects
from A. From the technical point of view, formal concepts are fixed points of the
Galois connection 〈↑, ↓〉 induced by I. Formal concepts in I ⊆ X×Y correspond
to so-called maximal rectangles in I. In a more detail, any 〈A, B〉 ∈ 2X × 2Y

such that A × B ⊆ I shall be called a rectangle in I. Rectangle 〈A, B〉 in I is a
maximal one if, for each rectangle 〈A′, B′〉 in I such that A × B ⊆ A′ × B′, we
have A = A′ and B = B′. We have that 〈A, B〉 ∈ 2X ×2Y is a maximal rectangle
in I iff A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts.

The set of all formal concepts in I is denoted by B(X, Y, I). In this paper, we
will be interested in performance of algorithms computing (listing all concepts in)
B(X, Y, I). Note that B(X, Y, I) can optionally be equipped with a partial order
≤ modeling the subconcept-superconcept hierarchy: We put 〈A1, B1〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2 (or, equivalently, iff B2 ⊆ B1). If 〈A1, B1〉 ≤ 〈A2, B2〉 then 〈A1, B1〉
is called a subconcept of 〈A2, B2〉. The set B(X, Y, I) together with ≤ form a
complete lattice whose structure is described by the Main Theorem of Formal
Concept Analysis [6].

2.2 Algorithms for Computing Formal Concepts

Several algorithms for computing formal concepts have been proposed. In our ex-
periments, we have considered three well-known algorithms—Ganter’s NextClo-
sure [5], Lindig’s UpperNeighbor [13], and Kuznetsov’s CloseByOne [9,10] which
is conceptually close to the algorithm of Norris [14]. These algorithms are com-
monly used for computing formal concepts and, therefore, their efficient imple-
mentation is crucial.

A detailed description of the algorithms is outside the scope of this paper.
Interested readers can find details in the papers cited above and in a survey
paper [11] presenting a comparison of various algorithms for FCA. Just to re-
call, NextClosure and CbO are algorithms which are conceptually close because
they perform the same canonicity test to prevent listing the same formal concept
multiple times. The fundamental difference of the algorithm is in the strategy
in which they traverse through the search space containing all formal concepts.
Although mutually reducible, the algorithms are different from the practical
efficiency point of view as we will see later and as it is also shown in [11].
Lindig’s algorithm belongs to a different family of algorithms that compute
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formal concepts and the subconcept-superconcept ordering ≤ at the same time.
The algorithm keeps track of all formal concepts that have been computed, i.e.
it stores them in a data structure. Usually, a balanced tree or a hash table
is used to store concepts. The concepts are stored in a data structure for the
sake of checking whether a formal concept has been found in previous steps of
computation.

2.3 Representation of Formal Contexts and Computing Closures

Representation of the input data (a formal context) is crucial and has an im-
portant impact on performance of real applications. To increase the speed of
our implementations, we store each context in two set-theoretical forms. This
allows us to (i) increase speed of computing closures for certain algorithms and
(ii) we are able to use a uniform data representation for contexts, extents, and
intents. The first form is an array of sets containing, for each object x ∈ X , a
set {x}↑ of all attributes of object x. Dually, the second form is an array of sets
containing, for each attribute y ∈ Y , a set {y}↓ of all objects having attribute y.
This redundant representation of contexts can significantly improve the speed of
UpperNeighbor and CbO. Namely, given a formal concept 〈A, B〉 and y 	∈ B, we
can compute a new formal concept 〈A ∩ {j}↓, (A ∩ {j}↓)↑〉 by intersecting sets
of objects and attributes from both context representations [15].

3 Used Data Structures and Algorithms: An Overview

The most critical operations used in the algorithms for computing formal concepts
are set operations and predicates that are needed to manipulate extents and in-
tents of computed formal concepts. This means, operations of intersection, union,
difference and predicate of membership (∩, ∪, \, and ∈, respectively). Therefore,
we focus on data structures that allow to efficiently implement these operations.
In the sequel, we provide a brief overview of five data structures we deem suitable
to represent sets and which will be used in our performance measurements.

3.1 Bit Array

The first data structure we use to represent a set is an array of bits. A bit array is
a sequence of 0’s and 1’s and is very suitable for representing characteristic func-
tion of a set. If the element is present in a set, the bit at the appropriate position
has value 1, otherwise it has value 0. Let us consider universe U = {a, b, c, d, e}
and bit array 01001 such bit array may represent set {b, e}. Obviously, one has
to fix a total order on U in order to make such representation unambiguous.
In the sequel, we are going to use a set X = {0, 1, . . . , m} of objects and a set
Y = {0, 1, . . . , n} of attributes, respectively, with the natural ordering of num-
bers. In other words, each element in X or Y can be used as an index (in a bit
array). Note that there is no danger of confusing objects with attributes because
we do not mix elements from the sets X and Y in any way.
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An important feature of this data structure is that all operations may be
reduced to few bitwise operations performed directly by CPU. For instance, if we
consider two sets from universe of size 64, their intersection may be computed
on contemporary computers in one operation (bitwise logical AND). On the
other hand, the size of the data structure representing a set is determined by
the size of the universe and not by the size of the set itself. This may be a
serious disadvantage while dealing with small sets defined in large universes—a
situation that may frequently occur when dealing with sparse data sets with
low densities of 1’s (i.e., low percentages of 1’s in the context, meaning that |I|
is small compared to |X | · |Y |). In such a case, sets occupy large segments of
memory and operations may not have to be so efficient as expected.

3.2 Sorted Linked List

Linked lists represent another type of a data structure suitable and frequently
used for representing sets. The usage is obvious, an element belongs into a set,
if and only if it is present in the list representing the set (we allow no element
duplicities in lists). In the sequel, we consider a variant of linked list, where all
elements are sorted w.r.t. the fixed total order (see Section 3.1). This allows us
to implement set operations more efficiently. For instance, while computing an
intersection of two sets, we may use so called merging. This means, we take both
lists and repeatedly apply the following procedure:

If the first elements of both the lists are the same, we put this element
into the resulting set and we remove both the elements from the consid-
ered lists, otherwise we remove the least element.

We repeat this procedure until one of the lists is empty and then the resulting set
contains only the elements that are present in both sets. Other set operations can
be implemented analogously taking into account the total ordering of elements
in the lists.

From the point of view of memory requirements, linked lists have certain
overhead since with each element of a list we have to allocate an additional
space for pointer to the next element of the list.

3.3 Array

In much the same way as in case of lists, we may store elements of a set into
an array. This makes the representation of a set more space efficient since we do
not have to store pointers between elements. Furthermore, if the set elements
are ordered, we may optimize particular operations with the divide et impera
approach by employing binary search [12]. For instance, to compute intersection
of two sets we can go through all elements in the smaller set and using binary
search we can check whether given element is also in the second set.

On the other hand, the advantages of arrays are counterweighted by the fact
that arrays need some additional effort to shrink or expand their size while
adding or removing elements from the set.
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3.4 Binary Search Tree

Binary search tree is a data structure that has similar time complexity of the
essential operations as an array. For example, when computing intersection of
two sets, we proceed in a similar way as in case of arrays. We go through all
elements in the smaller set and check if the elements is also in the second one.
If the tree is balanced, we can do such check in a logarithmic time. This means,
computation of the intersection has time complexity O(n · log m).

Besides the performance, other advantages of binary trees include more effi-
cient insertion and deletion of elements than in case of arrays. On the other hand,
trees are less space efficient and need additional effort to keep them balanced
to provide adequate performance. Several variants of binary search trees were
proposed. For our experiments we have selected self-balancing lean-left red-black
tree [4,16] for its efficiency and briefness of its implementation.

3.5 Hash Table

The last data structure we consider is a hash table. The hash tables are usually
not so space efficient as the previously mentioned data structures but the time
complexity of operations with hash tables is comparable. For example, computa-
tion of intersection is similar as in the previous cases: We go through all elements
in the first set and check whether the elements are also in the second one. We
have included hash tables since they are frequently used to implement sets in
standard libraries of programming languages. There is therefore a temptation of
using such library structures for representing sets. In our experiments, we have
considered a variant of hash table with separate chaining [4].

3.6 Time Complexity of Operations

Fig. 1 depicts asymptotic time complexities of the elementary set operations
with respect to data structures representing sets. The the time complexities are
expressed in terms of the O-notation.

∩ ∪ ∈
bit array O(|U |) O(|U |) O(1)
sorted linked list O(m + n) O(m + n) O(n)
sorted array O(n · log m) O(n · log m) O(log n)
binary search tree O(n · log m) O(n · log m) O(log n)
hash table O(m · n) O(m · n) O(n)

Fig. 1. Worst-case time complexity of set operations

Remarks. The O-notation captures only a particular aspect of the time complex-
ity and real performance of data structures may significantly differ. Sometimes, it
may be useful to join several elementary operations into a single compound opera-
tion. For instance, Ganter’s algorithm and CbO perform a canonicity test that pre-
vents computing concepts multiple times. This test consists of several operations
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and it seems to be practical to implement this test as one operation that takes ad-
vantage of the underlying data structure. For example, in the CloseByOne (CbO)
algorithm, the test is defined as B ∩ Yj = D ∩ Yj , where D = (B ∪ {y})↓↑ is an
intent of a newly generated concept, B is the intent of previously generated con-
cept, and Yj represents first j attributes. In some cases, it may be inefficient to
compute the intersections of sets B and D with the set Yj and then compare the
results. In fact, it suffices to compare just one set inclusion B ∩ Yj ⊇ D∩Yj as the
converse inclusion follows from the monotony of the closure operator ↓↑. In other
cases, however, it may be more efficient to perform the test without computing the
intersections first: we check whether each y ∈ D such that y ≤ j is present in B.
From the point of view of the asymptotic complexity, such optimization is not es-
sential because its complexity is the same. On the other hand, the impact on the
practical performance of such optimization may be significant as we will see in the
next section.

4 Experimental Performance Measurements

In this section we discuss the behavior of algorithms under various conditions.
This means, we have tested algorithms for various input datasets (with various
sizes and densities) and data structures.

4.1 Implementation

In order to compare properties of algorithms and data structures, we have im-
plemented all tests in the C language. All programs share the same code base,
i.e., the implementation of each algorithm is shared and only the implementation
of (operations with) data structures differs. We have almost directly translated
the usual pseudocode of algorithms to an equivalent code in C. In the codes of
the algorithms, we have not employed any specific optimizations but to emulate
environment of real applications and to reflect strengths of each data structure,
we have optimized particular operations. For instance, while computing the out-
comes of the concept-forming operators ↓ and ↑, it is necessary to compute an
intersection of multiple sets, see Section 2.3. One option to compute such in-
tersection is to repeatedly apply an operation of intersection of two sets. This
approach is for example suitable for bit arrays. On the other hand, in some cases
it is possible to compute intersection of multiple sets more efficiently if we con-
sider all sets in the intersection. For instance, this applies for ordered lists, i.e.,
we perform a merge of all the lists simultaneously.

Remarks. The C language has been selected for testing purposes since it allows
equally efficient implementations of all considered data structures. If anyone is
going to use other programming language, he or she should be aware of its specific
properties. For instance, in case of Java or C#, particular data structures may
be less efficient due to issues connected to auto-boxing, etc.

All experiments were done on an otherwise idle computer equipped with two
quad-core Intel Xeons E5345, 12GB RAM, GNU/Linux and we have compiled
all programs with GCC 4.1.2 with only -O3 option turned on.
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4.2 Performance

In our experiments, we compare running times needed to compute all formal
concepts using considered algorithms with particular data structures. Since the
time of computation is dependent on many factors, especially the size of the data
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Fig. 2. Efficiency of data structures for particular algorithms—CloseByOne (top);
NextClosure (middle); UpperNeighbor (bottom)
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and density of 1’s present in the data matrix, we have used randomly generated
data tables of various properties for our experiments.

In the first set of experiments, we tried to answer the question if some struc-
ture is better for particular algorithm then other structures. To find the answer,
for each algorithm we compared time it takes to compute all formal concepts in
data tables with various numbers of objects, 50 attributes, where the density of
1’s in the data table is 15%. We have selected 15% because data used in formal
concept analysis are usually sparse (but there can be exceptions). The results are
presented in Fig. 2. One can see that for CloseByOne and Lindig’s UpperNeighbor,
the tree representation of sets is the optimal one and for Ganter’s NextClosure it
is the bit array representation. Notice that the linked list representation provides
reasonable results for all algorithms. On the contrary, hash table representation
seems to provide a poor performance under all circumstances.

The previous experiment involved a fixed number of attributes and a fixed
density of 1’s in the data matrix. Since the dimension and density of contexts
have considerable impact on performance, we performed additional experiments
where the dimensions and/or density are variable.

In the next experiment, we selected tables of size 100 × 100 and 500 × 100
with various densities of 1’s and compared time it takes to compute all formal
concepts. Fig. 3 and Fig. 4 show times for the CloseByOne algorithm (the results
for other algorithms turned out to be analogous and are therefore omitted).
Notice, that we have used logarithmic scale for the time axes. This allows us
to identify a point where some data structures become less efficient. Fig. 3 and
Fig. 4 also indicate that linked list, binary tree and array are suitable for sparse
data. Contrary to that, bit arrays are more suitable for dense data.

The point, i.e., the density, for which bit array outperforms other representa-
tions is dependent on other factors. As we can see in Fig. 3 and Fig. 4, for larger
data tables this point shifts to higher densities.

The last property of data tables we are going to consider is the number of at-
tributes. The results are shown Fig. 5, presenting computation time of NextClo-
sure algorithm with data tables consisting of 100 objects, various numbers of
attributes and 15% density of 1’s. With the exception of hash tables and binary
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objects

trees, the number of attributes does not have a significant impact on the time
of the computation. Notice that in case of bit arrays, linked lists, and arrays,
the impact is so insignificant that we had to use logarithmic scale to make the
corresponding lines distinct.

4.3 Memory Efficiency

In previous sections, we have focused on time efficiency of algorithms and data
structures. Another important aspect of data structures is their space efficiency.
Common feature of the Ganter’s NextClosure and Kuznetsov’s CloseByOne al-
gorithms is that they are not extensively memory demanding. NextClosure has
a constant memory complexity and CloseByOne has a (worst-case) linear mem-
ory complexity depending on the number of attributes (in practice, the memory
consumption is typically strongly sublinear).

This means, the size of particular data structure chosen for representing sets
affects practically just the size of the (the representation of) the context. The size
of (the representation of) the context does not have significant influence on the
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overall memory consumption. On the other hand, Lindig’s UpperNeighbor needs
to store generated concepts (or at least their intents or extents) to check whether
a newly computed concept have already been generated or not. This feature may
seriously affect the size of data that may be processed by this algorithm, i.e., all
concepts present in the data have to fit into available memory.

In the following experiment, we have focused on the memory consumption.
We have selected random data matrix with 100 attributes, various counts of ob-
jects and density of 1’s 10%. Fig. 6 shows the growth of the allocated memory
dependent on the number of concepts present in the data. One can see that
the bit array and array representations require approximately the same amount
of memory. Furthermore, this applies also for linked list and binary tree repre-
sentations. The disproportion between the assumed memory consumption and
the real one may be caused by the memory management. Memory allocators in
modern operating systems usually do not allocate the exact amount of memory
that is requested for an object but allocate rather a larger amount.

Conclusions

This paper addresses an important but overlooked issue: which data structures
should be chosen to compute formal concepts. As expected, there is no “the
best” structure suitable for all types of data tables and data structures have to
be wisely selected. The paper provides a survey with guidelines on how to select
such data structure in dependence on the data size, used algorithm, and density.
It contains our initial observations on the role of data structures in FCA in terms
of the efficiency. If your data is sparse or if you have to deal with large dataset,
binary search trees or linked lists are good choices. If you have dense data or
smaller data table, the bit array seems to be an appropriate structure. Definitely,
usage of hash tables should be avoided as it has shown to be inappropriate for
computing formal concepts.

Future research will focus on considering more data structures, mixed data
representations, and statistical description of factors and conditions that may
have a (hidden) influence on the choice of data structure.
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