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Abstract. We study fuzzy attribute logic, i.e. a logic for reasoning about
formulas of the form A ⇒ B where A and B are fuzzy sets (non-sharp
collections) of attributes. A formula A ⇒ B is true in a data table with
fuzzy attributes iff each object having all attributes from A has also all
attributes from B, membership degrees of A and B playing a role of
thresholds. We present a set of axioms and prove syntactico-semantical
completeness with respect to the data table semantics. We also prove
some derived rules in our axiomatic system. Furthermore, we introduce
a notion of a degree to which a fuzzy set T of formulas entails a formula
A ⇒ B and prove completeness in Pavelka style (graded completeness)
which says that a degree to which A ⇒ B semantically follows from T
equals a degree to which A ⇒ B is provable from T .

1 Introduction

If-then rules are perhaps the most common way to express our knowledge. Ba-
sically, rules are extracted from data to bring up a new knowledge about the
data or are formulated by a user/expert to represent a constraint on the data.
Rules of the form A ⇒ B, where A and B are collections of attributes, have
been used in data mining and in databases. In data mining, rules A ⇒ B are
called association rules, see e.g. [28], or attribute implications in formal concept
analysis, see [15, 19], and have the following basic meaning: If an object has all
attributes from A then it has all attributes from B. The goal then is to extract
“all interesting rules” from data. In databases, rules A ⇒ B are called functional
dependencies, see [24] for a good overview, and have the following basic meaning:
If any two objects (items, rows) of a database agree in their values on each of
the attributes from A then they agree on each attribute from B.

Armstrong [1] introduced a set of inference rules, a modified version of which
became known as Armstrong axioms. Armstrong axioms are complete w.r.t.
the above-described database semantics. That is, a A ⇒ B is provable (using
Armstrong axioms) from a set T of rules if and only if A ⇒ B semantically
follows from T , i.e. if every database satisfying each rule from T satisfies also
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A ⇒ B. It is also known that Armstrong axioms are complete w.r.t. the above-
described object-attribute semantics [15, Section 2.3].

We are interested in rules A ⇒ B and their object-attribute semantics from
the point of view of fuzzy logic. Following [15], we call these rules attribute
implications. Attribute implications in a fuzzy setting were first considered by
Pollandt [26]. In a series of papers [6, 8, 10, 11], we investigated attribute implica-
tions from the point of view of a rather general fuzzy logic which covers most of
the particular cases used in applications: both finite and infinite scales of truth
degrees, various fuzzy logical conjunctions, etc. [23, 20]. We defined an object-
attribute semantics, i.e. attribute implications are interpreted in data tables with
rows and columns corresponding to objects and attributes, respectively, and ta-
ble entries describing degrees to which objects have attributes. Furthermore, we
described non-redundant bases of attribute implications, i.e. minimal sets of at-
tribute implications entailing all true implications of a given data table, and an
algorithm with a polynomial time delay [22] to generate non-redundant bases.

The present paper is a follow-up to [11]. We introduce a fuzzy attribute logic,
a logic for reasoning with (fuzzy) attribute implications in a fuzzy setting. We are
interested in completeness w.r.t. object-attribute semantics in two ways. First,
the usual completeness saying that for a set T of (fuzzy) attribute implications
and a (fuzzy) attribute implication A ⇒ B, A ⇒ B is provable from T if and
only if A ⇒ B semantically follows from T . Second, in graded completeness
(Pavelka-style completeness) [16, 25] saying that for a fuzzy set T of (fuzzy)
attribute implications and a (fuzzy) attribute implication A ⇒ B, a degree to
which A ⇒ B is provable from T equals a degree to which A ⇒ B semantically
follows from T . We show that axioms for fuzzy attribute logic can be formulated
as consisting of two groups: First, Armstrong-like axioms capturing the structure
of reasoning with rules. Second, axioms capturing reasoning with truth degrees
in rules. Also, we comment on related approaches and future research.

2 Preliminaries

Fuzzy logic and fuzzy set theory are formal frameworks for a manipulation of a
particular form of imperfection called fuzziness (vagueness). Contrary to classical
logic, fuzzy logic uses a scale L of truth degrees, a most common choice being
L = [0, 1] (real unit interval) or some subchain of [0, 1]. This enables to consider
intermediate truth degrees of propositions, e.g. “object x has attribute y” has
a truth degree 0.8 indicating that the proposition is almost true. In addition
to a set L of truth degrees, one has to pick an appropriate collection of logical
connectives (implication, conjunction, . . . ). A general choice of a set of truth
degrees plus logical connectives is represented by so-called complete residuated
lattices (equipped possibly with additional operations). The rest of this section
presents an introduction to fuzzy logic notions we need in the sequel. Details
can be found e.g. in [3, 18, 20], a good introduction to fuzzy logic and fuzzy sets
is presented in [23].
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A complete residuated lattice with a truth-stressing hedge (shortly, a hedge)
[20, 21] is an algebra L = 〈L,∧,∨,⊗,→, ∗, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a com-
plete lattice with 0 and 1 being the least and greatest element of L, respec-
tively; 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative,
and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy so-called adjointness
property:

a⊗ b ≤ c iff a ≤ b → c (1)

for each a, b, c ∈ L; hedge ∗ satisfies

1∗ = 1, (2)
a∗ ≤ a, (3)

(a → b)∗ ≤ a∗ → b∗, (4)
a∗∗ = a∗, (5)

for each a, b ∈ L, ai ∈ L (i ∈ I). Elements a of L are called truth degrees. ⊗ and
→ are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. Hedge
∗ is a (truth function of) logical connective “very true”, see [20, 21]. Properties
(3)–(5) have natural interpretations, e.g. (3) can be read: “if a is very true, then
a is true”, (4) can be read: “if a → b is very true and if a is very true, then b is
very true”, etc.

A common choice of L is a structure with L = [0, 1] (unit interval), ∧ and
∨ being minimum and maximum, ⊗ being a left-continuous t-norm with the
corresponding →. Three most important pairs of adjoint operations on the unit
interval are:

 Lukasiewicz:
a⊗ b = max(a + b− 1, 0),

a → b = min(1− a + b, 1),
(6)

Gödel:
a⊗ b = min(a, b),

a → b =
{

1 if a ≤ b,
b otherwise,

(7)

Goguen (product):
a⊗ b = a · b,

a → b =
{

1 if a ≤ b,
b
a otherwise.

(8)

In applications, we usually need a finite linearly ordered L. For instance, one
can put L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗ given
by ak ⊗ al = amax(k+l−n,0) and the corresponding → given by ak → al =
amin(n−k+l,n). Such an L is called a finite  Lukasiewicz chain. Another possibility
is a finite Gödel chain which consists of L and restrictions of Gödel operations
on [0, 1] to L.

Two boundary cases of (truth-stressing) hedges are (i) identity, i.e. a∗ = a
(a ∈ L); (ii) globalization [27]:

a∗ =
{

1 if a = 1,
0 otherwise. (9)
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A special case of a complete residuated lattice with hedge is the two-element
Boolean algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the structure
of truth degrees of the classical logic. That is, the operations ∧,∨,⊗,→ of 2 are
the truth functions (interpretations) of the corresponding logical connectives of
the classical logic and 0∗ = 0, 1∗ = 1. Note that if we prove an assertion for
general L, then, in particular, we obtain a “crisp version” of this assertion for L
being 2.

Having L, we define usual notions: an L-set (fuzzy set) A in universe U is a
mapping A : U → L, A(u) being interpreted as “the degree to which u belongs
to A”. If U = {u1, . . . , un} then A can be denoted by A = {a1/u1, . . . ,

an/un}
meaning that A(ui) equals ai for each i = 1, . . . , n. For brevity, we introduce
the following convention: we write {. . . , u, . . .} instead of {. . . , 1/u, . . .}, and we
also omit elements of U whose membership degree is zero. For example, we
write {u, 0.5/v} instead of {1/u, 0.5/v, 0/w}, etc. Let LU denote the collection
of all L-sets in U . The operations with L-sets are defined componentwise. For
instance, the intersection of L-sets A,B ∈ LU is an L-set A ∩B in U such that
(A∩B)(u) = A(u)∧B(u) for each u ∈ U , etc. Binary L-relations (binary fuzzy
relations) between X and Y can be thought of as L-sets in the universe X × Y .
That is, a binary L-relation I ∈ LX×Y between a set X and a set Y is a mapping
assigning to each x ∈ X and each y ∈ Y a truth degree I(x, y) ∈ L (a degree to
which x and y are related by I). An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1}
for each x ∈ X. Crisp L-sets can be identified with ordinary sets. For a crisp A,
we also write x ∈ A for A(x) = 1 and x 6∈ A for A(x) = 0. An L-set A ∈ LX is
called empty (denoted by ∅) if A(x) = 0 for each x ∈ X. For a ∈ L and A ∈ LX ,
a⊗A ∈ LX is defined by (a⊗A)(x) = a⊗A(x).

Given A,B ∈ LU , we define a subsethood degree

S(A,B) =
∧

u∈U

(
A(u) → B(u)

)
, (10)

which generalizes the classical subsethood relation ⊆. S(A,B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1.
As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U . In the following we
use well-known properties of residuated lattices and fuzzy structures which can
be found in monographs [3, 20]. Throughout the rest of the paper, L denotes an
arbitrary complete residuated lattice with a hedge.

3 Fuzzy attribute logic

3.1 Attribute implications and their validity

We first introduce attribute implications. Suppose Y is a finite set of attributes.
A (fuzzy) attribute implication (over attributes Y ) is an expression A ⇒ B, where
A,B ∈ LY (A and B are fuzzy sets of attributes). Fuzzy attribute implications
are the basic formulas of fuzzy attribute logic.

The intended meaning of A ⇒ B is: “if it is (very) true that an object has
all attributes from A, then it has also all attributes from B” with the logical
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connectives being given by L. A fuzzy attribute implication does not have any
kind of “validity” on its own—it is a syntactic notion.

Remark 1. For an fuzzy attribute implication A ⇒ B, both A and B are fuzzy
sets of attributes. Particularly, A and B can both be ordinary sets (i.e. A(y) ∈
{0, 1} and B(y) ∈ {0, 1} for each y ∈ Y ), i.e. ordinary attribute implications
(association rules, functional dependencies) are a special case of fuzzy attribute
implications.

In order to consider validity, we must introduce an interpretation of fuzzy
attribute implications. Fuzzy attribute implications are meant to be interpreted
in data tables with fuzzy attributes [6, 8, 10]. A data table with fuzzy attributes
can be seen as a triplet T = 〈X, Y, I〉 where X is a set of objects, Y is a
finite set of attributes (the same as above in the definition of a fuzzy attribute
implication), and I ∈ LX×Y is a binary L-relation between X and Y assigning
to each object x ∈ X and each attribute y ∈ Y a degree I(x, y) to which x has
y. T = 〈X, Y, I〉 can be thought as a table with rows and columns corresponding
to objects x ∈ X and attributes y ∈ Y , respectively, and table entries containing
degrees I(x, y). A row of a table T = 〈X, Y, I〉 corresponding to an object x ∈ X
can be seen as a fuzzy set Ix of attributes to which an attribute y ∈ Y belongs
to a degree Ix(y) = I(x, y). Forgetting now for a while about the data table, any
fuzzy set M ∈ LY can be seen as a fuzzy set of attributes of some object with
M(y) being a degree to which the object has attribute y. For fuzzy set M ∈ LY

of attributes, we define a degree ||A ⇒ B||M ∈ L to which A ⇒ B is valid in M
by

||A ⇒ B||M = S(A,M)∗ → S(B,M). (11)

It is easily seen that if M is a fuzzy set of attributes of some object x then
||A ⇒ B||M is the degree to which “if it is (very) true that x has all attributes
from A then x has all attributes from B”. For a system M of L-sets in Y , define
a degree ||A ⇒ B||M to which A ⇒ B is true in (each M from) M by

||A ⇒ B||M =
∧

M∈M
||A ⇒ B||M . (12)

Finally, given a data table T = 〈X, Y, I〉 and putting M = {Ix |x ∈ X}, ||A ⇒
B||M is a degree to which it is true that A ⇒ B is true in each row of table T ,
i.e. a degree to which “for each object x ∈ X: if it is (very) true that x has all
attributes from A, then x has all attributes from B”. This degree is denoted by
||A ⇒ B||〈X,Y,I〉 and is called a degree to which A ⇒ B is true in data table
〈X, Y, I〉.

Remark 2. For a fuzzy attribute implication A ⇒ B, degrees A(y) ∈ L and
B(y) ∈ L can be seen as thresholds. This is best seen when ∗ is globalization,
i.e. 1∗ = 1 and a∗ = 0 for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1,
we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a 6≤ b.
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Table 1. Data table with fuzzy atributes

I y1 y2 y3 y4 y5 y6

x1 1.0 1.0 0.0 1.0 1.0 0.2
x2 1.0 0.4 0.3 0.8 0.5 1.0
x3 0.2 0.9 0.7 0.5 1.0 0.6
x4 1.0 1.0 0.8 1.0 1.0 0.5

X = {x1, . . . , x4}

Y = {y1, . . . , y6}

Therefore, ||A ⇒ B||〈X,Y,I〉 = 1 means that a proposition “for each object x ∈ X:
if for each attribute y ∈ Y , x has y in degree greater than or equal to (a threshold)
A(y), then for each y ∈ Y , x has y in degree at least B(y)” has a truth degree
1 (is fully true). In general, ||A ⇒ B||〈X,Y,I〉 is a truth degree of the latter
proposition. As a particular example, if A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0
for y 6∈ YA) B(y) = b for y ∈ YB ⊆ Y (and B(y) = 0 for y 6∈ YB), the proposition
says “for each object x ∈ X: if x has all attributes from YA in degree at least a,
then x has all attributes from YB in degree at least b”, etc. That is, having A and
B fuzzy sets allows for a rich expressibility of relationships between attributes
which is why we want A and B to be fuzzy sets in general.

Example 1. For illustration, consider Tab. 3.1, where table entries are taken from
L defined on the real unit interval L = [0, 1] with globalization. Consider now
the following fuzzy attribute implications.

(1) {0.3/y3,
0.7/y4}⇒{y1,

0.3/y2,
0.8/y4,

0.4/y6} is true in degree 1 in data table
from Tab. 3.1. On the other hand, implication {y1,

0.3/y3}⇒{0.1/y2,
0.7/y5,

0.4/y6}
is not true in degree 1 in Tab. 3.1—object x2 can be taken as a counterexample:
x2 does not have attribute y5 in degree greater than or equal to 0.7.

(2) {y1, y2}⇒{y4, y5} is a crisp attribute implication which is true in degree
1 in the table. On the contrary, {y5}⇒ {y4} is also crisp but it is not true in
degree 1 (object x3 is a counterexample).

(3) Implication {0.5/y5,
0.5/y6}⇒{0.3/y2,

0.3/y3} is in the above-mentioned form
for YA = {y5, y6}, YB = {y2, y3}, a = 0.5, and b = 0.3. The implication is true
in data table in degree 1. {0.5/y5,

0.5/y6}⇒{0.3/y1,
0.3/y2} is also in this form (for

YB = {y1, y2}) but it is not true in the data table in degree 1 (again, take x3 as
a counterexample).

3.2 Semantic entailment and further semantic notions

Consider an L-set T of fuzzy attribute implications. From the point of view of
logic, T can be seen as a theory, i.e. a degree T (A ⇒ B) to which A ⇒ B belongs
to T can be seen as a degree to which we assume the validity of A ⇒ B. This
corresponds to the notion of a theory as a fuzzy set of axioms in fuzzy logic [16,
25]. From the user’s point of view, T can be seen a fuzzy set of implications
extracted from data such that T (A ⇒ B) is a degree to which A ⇒ B holds true
in data. If T is crisp (which is particularly interesting) we write A ⇒ B ∈ T if
T (A ⇒ B) = 1 and A ⇒ B 6∈ T if T (A ⇒ B) = 0.
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For a fuzzy set T of fuzzy attribute implications, the set Mod(T ) of all models
of T is defined by

Mod(T ) = {M ∈ LY | for each A,B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||M}.

That is, M ∈ Mod(T ) means that for each attribute implication A ⇒ B, a degree
to which A ⇒ B holds in M is higher than or at least equal to a degree T (A ⇒ B)
prescribed by T . Particularly, for a crisp T , Mod(T ) = {M ∈ LY | for each A ⇒
B ∈ T : ||A ⇒ B||M = 1}.

A degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from a fuzzy
set T of attribute implications is defined by

||A ⇒ B||T =
∧

M∈Mod(T ) ||A ⇒ B||M .

The following lemma was proved in [11].

Lemma 1. For A,B,M ∈ LY and c ∈ L we have

c ≤ ||A ⇒ B||M iff ||A ⇒ c⊗B||M = 1.

Lemma 1 has surprising consequences. It enables us to reduce the concept of
a model of a fuzzy set of fuzzy attribute implications to the concept of a model of
an ordinary set of fuzzy attribute implications, and to reduce the concept of se-
mantic entailment from a fuzzy set of fuzzy attribute implications to the concept
of semantic entailment from an ordinary set of fuzzy attribute implications:

Lemma 2. Let T be a fuzzy set of fuzzy attribute implications and A,B ∈ LY .
Define an ordinary set c(T ) of fuzzy attribute implications by

c(T ) = {A ⇒ T (A ⇒ B)⊗B |A,B ∈ LY and T (A ⇒ B)⊗B 6= ∅}. (13)

Then we have

Mod(T ) = Mod(c(T )), (14)
||A ⇒ B||T = ||A ⇒ B||c(T ). (15)

Proof. (14) directly using Lemma 1. (15) is a consequence of (14).

Furthermore, Lemma 1 enables us to reduce the concept of a degree of en-
tailment of a fuzzy attribute implication from a fuzzy set of fuzzy attribute
implications to the concept of an entailment in degree 1 (full entailment) of a
fuzzy attribute implication from a fuzzy set of fuzzy attribute implications:

Lemma 3. For A,B ∈ LY and a fuzzy set T of fuzzy attribute implications we
have

||A ⇒ B||T =
∨
{c ∈ L | ||A ⇒ c⊗B||T = 1}.
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Proof. Using Lemma 1, we have

||A ⇒ B||T =
∧

M∈Mod(T ) ||A ⇒ B||M =

=
∨
{c ∈ L | c ≤ ||A ⇒ B||M for each M ∈ Mod(T )} =

=
∨
{c ∈ L | ||A ⇒ c⊗B||T = 1}.

Therefore, we have:

Corollary 1. For A,B ∈ LY and a fuzzy set T of fuzzy attribute implications
we have

||A ⇒ B||T =
∨
{c ∈ L | ||A ⇒ c⊗B||c(T ) = 1},

with c(T ) defined by (13).

Corollary 1 shows that the concept of a degree of entailment from a fuzzy
set of fuzzy attribute implications can be reduced to entailment in degree 1
from a set of fuzzy attribute implications. We use this fact in the subsequent
development.

An ordinary set T of fuzzy attribute implications is said to be semantically
closed if ||A ⇒ B||T = 1 iff A ⇒ B ∈ T , i.e. if T = {A ⇒ B | ||A ⇒ B||T = 1}.

3.3 Completeness of fuzzy attribute logic

In this section, we introduce an axiomatic system for fuzzy attribute logic (FAL)
and prove completeness theorems. First, we introduce deduction rules and a
notion of a proof of a fuzzy attribute implication from an ordinary set T of fuzzy
attribute implications. Second, we prove that a fuzzy attribute implication A ⇒
B is provable from an ordinary set T of fuzzy attribute implications iff A ⇒ B
semantically follows from T in degree 1. Third, we introduce a concept of a degree
|A ⇒ B|T of provability of a fuzzy attribute implication A ⇒ B from a fuzzy
set T of fuzzy attribute implications and show that |A ⇒ B|T = ||A ⇒ B||T .

Axioms of FAL and some derived rules

Our axiomatic system consists of the following deduction rules.

(Ax) infer A ∪B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A ⇒ B infer c∗ ⊗A ⇒ c∗ ⊗B

for each A,B,C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood as
usual deduction rules: having fuzzy attribute implications which are of the form
of fuzzy attribute implication in the input part (the part preceding “infer”) of
a rule, a rule allows us to infer (in one step) the corresponding fuzzy attribute
implication in the output part (the part following “infer”) of a rule. (Ax) is a
nullary rule (axiom) which says that each A∪B ⇒ A (A,B ∈ LY ) is inferred in
one step.
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Remark 3. (1) Rules (Ax) and (Cut) are inspired by [14]. The only difference
from [14] is that A,B, C, D are fuzzy sets in (Ax) and (Cut) while in [14],
A,B,C, D are ordinary sets.

(2) Rule (Mul) is a new rule in our fuzzy setting.
(3) If ∗ is globalization, (Mul) can be omitted. Indeed, for c = 1, we have

c∗ = 1 and (Mul) becomes “from A ⇒ B infer A ⇒ B” which is a trivial rule;
for c < 1, we have c∗ = 0 and (Mul) becomes “from A ⇒ B infer ∅ ⇒ ∅” which
can be omitted since ∅ ⇒ ∅ can be inferred by (Ax).

A fuzzy attribute implication A ⇒ B is called provable from a set T of fuzzy
attribute implications using a set R of deduction rules, written T `R A ⇒ B,
if there is a sequence ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is
A ⇒ B and for each ϕi we either have ϕi ∈ T or ϕi is inferred (in one step)
from some of the preceding formulas (i.e., ϕ1, . . . , ϕi−1) using some deduction
rule from R. If R consists of (Ax)–(Mul), we say just “provable . . . ” instead of
“provable . . . using R” and write just T ` A ⇒ B instead of T `R A ⇒ B.

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” (ϕi, ϕ are fuzzy attribute implica-
tions) is said to be derivable from a setR of deduction rules if {ϕ1, . . . , ϕn} `R ϕ.
Again, if R consists of (Ax)–(Mul), we omit R.

Lemma 4. The following deduction rules are derivable from (Ax) and (Cut):

(Ref) infer A ⇒ A,
(Wea) from A ⇒ B infer A ∪ C ⇒ B,
(Add) from A ⇒ B and A ⇒ C infer A ⇒ B ∪ C,
(Pro) from A ⇒ B ∪ C infer A ⇒ B,
(Tra) from A ⇒ B and B ⇒ C infer A ⇒ C,

for each A,B,C, D ∈ LY . Moreover, if “from ϕ1, . . . , ϕn infer ϕ” is a rule
derivable from the ordinary Armstrong axioms (see [24]) then replacing symbols
of sets by symbols of fuzzy sets, the rule is derivable from (Ax) and (Cut).

Proof. First, we prove the second claim. The proof is almost trivial. Namely, it
follows from [14] that each deduction rule derivable from the ordinary Armstrong
axioms is derivable from (Axc) and (Cutc) where (Axc) and (Cutc) result from
(Ax) and (Cut) by replacing fuzzy sets by ordinary sets. Now, observe that
replacing ordinary sets with fuzzy sets in any proof from (Axc) and (Cutc), we
get a proof from (Ax) and (Cut).

The first claim is a consequence of the second one. Namely, each of the rules
(Ref)–(Tra) is derivable from the original Armstrong axioms.

Completeness

We are now going to prove completeness of (Ax)–(Mul). Due to a lack of space
we omit some technical details and restrict ourselves to the case of a finite L.

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” is said to be sound if for each
M ∈ Mod({ϕ1, . . . , ϕn}) we have M ∈ Mod({ϕ}), i.e. each model of all of
ϕ1, . . . , ϕn is also a model of ϕ.
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Lemma 5. Each of the deduction rules (Ax)–(Mul) is sound.

Proof. For illustration, we check (Mul). Let M ∈ Mod({A ⇒ B}). We have to
show that M ∈ Mod({c∗ ⊗A ⇒ c∗ ⊗B}).

First, M ∈ Mod({A ⇒ B}) iff ||A ⇒ B||M = 1 iff S(A,M)∗ ≤ S(B,M) iff

for each y ∈ Y : B(y)⊗ S(A,M)∗ ≤ M(y). (16)

Second, M ∈ Mod({c∗ ⊗ A ⇒ c∗ ⊗ B}) iff ||c∗ ⊗ A ⇒ c∗ ⊗ B||M = 1 iff
S(c∗ ⊗A,M)∗ ≤ S(c∗ ⊗B,M) iff for each y ∈ Y we have

c∗ ⊗B(y)⊗ S(c∗ ⊗A,M)∗ ≤ M(y)

which is true. Indeed, using (16) we have

c∗ ⊗B(y)⊗ S(c∗ ⊗A,M)∗ =
= B(y)⊗ c∗ ⊗

(∧
y∈Y ((c∗ ⊗A(y)) → M(y))

)∗ =

= B(y)⊗ c∗ ⊗
(∧

y∈Y (c∗ → (A(y) → M(y)))
)∗ =

= B(y)⊗ c∗ ⊗
(
c∗ →

∧
y∈Y (A(y) → M(y))

)∗ =

= B(y)⊗ c∗ ⊗
(
c∗ → S(A,M)

)∗ ≤
≤ B(y)⊗ c∗ ⊗

(
c∗∗ → S(A,M)∗

)
=

= B(y)⊗ c∗ ⊗
(
c∗ → S(A,M)∗

)
≤

≤ B(y)⊗ S(A,M)∗ ≤ M(y).

We proved that (Mul) is sound.
Soundness of (Ax) and (Cut) can be proved analogously.

A set T of fuzzy attribute implications is said to be syntactically closed if
T ` A ⇒ B iff A ⇒ B ∈ T , i.e. if T = {A ⇒ B |T ` A ⇒ B}. The following
lemma is almost immediate.

Lemma 6. A set T of fuzzy attribute implications is syntactically closed iff we
have:

(Ax)-closure A ∪B ⇒ A ∈ T ,
(Cut)-closure if A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T then A ∪ C ⇒ D ∈ T ,
(Mul)-closure if A ⇒ B ∈ T then c∗ ⊗A ⇒ c∗ ⊗B ∈ T

for each A,B, C, D ∈ LY , and c ∈ L.

Lemma 7. Let T be a set of fuzzy attribute implications. If T is semantically
closed then T is syntactically closed.

Proof. By Lemma 6, we have to show that for each deduction rule “from ϕ1, . . . , ϕn

infer ϕ”, i.e. one of (Ax)–(Mul), we have that if ϕ1, . . . ϕn ∈ T then ϕ ∈ T . Let
thus ϕ1, . . . ϕn ∈ T . Since {ϕ1, . . . ϕn} ⊆ T , for any model M ∈ Mod(T ) we have
M ∈ Mod({ϕ1, . . . ϕn}), i.e. M ∈ Mod({ϕi}) for each i = 1, . . . , n. Since each
of the rules (Ax)–(Mul) is sound, we conclude M ∈ Mod({ϕ}). Since M is an
arbitrary model of T , this shows that ϕ is true in each model of T . Since T is
semantically closed, we get ϕ ∈ T .
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Lemma 8. Let T be a set of fuzzy attribute implications, let both Y and L be
finite. If T is syntactically closed then T is semantically closed.

Proof. Let T be syntactically closed. In order to show that T is semantically
closed, it suffices to show {A ⇒ B | ||A ⇒ B||T = 1} ⊆ T . We prove this by
showing that if A ⇒ B 6∈ T then A ⇒ B 6∈ {A ⇒ B | ||A ⇒ B||T = 1}. Recall
that since T is syntactically closed, T is closed under all of the rules (Ref)–(Tra)
of Lemma 4.

Let thus A ⇒ B 6∈ T . To see A ⇒ B 6∈ {A ⇒ B | ||A ⇒ B||T = 1}, we show
that there is M ∈ Mod(T ) which is not a model of A ⇒ B. For this purpose,
consider M = A+ where A+ is the largest one such that A ⇒ A+ ∈ T . A+

exists. Namely, S = {C |A ⇒ C ∈ T} is non-empty since A ⇒ A ∈ T by (Ref),
S is finite by finiteness of Y and L, and for A ⇒ C1, . . . , A ⇒ Cn ∈ T , we have
A ⇒

⋃n
i=1 Ci ∈ T by a repeated use of (Add).

We now need to check that (a) ||A ⇒ B||A+ 6= 1 (i.e., A+ is not a model of
A ⇒ B) and (b) for each C ⇒ D ∈ T we have ||C ⇒ D||A+ = 1 (i.e., A+ is a
model of T ).

(a): We need to show ||A ⇒ B||A+ 6= 1. By contradiction, suppose ||A ⇒
B||A+ = 1. Using A ⊆ A+ we then get 1 = ||A ⇒ B||A+ = S(A,A+)∗ →
S(B,A+) = 1 → S(B,A+) = S(B,A+), i.e. B ⊆ A+. Since A ⇒ A+ ∈ T , (Pro)
would give A ⇒ B ∈ T , a contradiction.

(b): Let C ⇒ D ∈ T . We need to show ||C ⇒ D||A+ = 1, i.e. S(C,A+)∗ →
S(D,A+) = 1 which is equivalent to S(C,A+)∗ ⊗ D ⊆ A+. To see this, it is
sufficient to show that A ⇒ S(C,A+)∗ ⊗ D ∈ T (namely, A+ is the largest
one for which A ⇒ A+ ∈ T ). Note that we have (b1) A ⇒ A+ ∈ T , (b2)
A+ ⇒ S(C,A+)∗ ⊗ C ∈ T , and (b3) S(C,A+)∗ ⊗ C ⇒ S(C,A+)∗ ⊗ D ∈ T .
Indeed, A ⇒ A+ ∈ T by definition of A+; A+ ⇒ S(C,A+)∗ ⊗ C ∈ T since
as S(C,A+)∗ ⊗ C ⊆ A+, A+ ⇒ S(C,A+)∗ ⊗ C in an instance of (Ax); and
S(C,A+)∗ ⊗ C ⇒ S(C,A+)∗ ⊗D ∈ T by (Mul) applied to C ⇒ D ∈ T . Now,
A ⇒ S(C,A+)∗ ⊗D ∈ T follows by (Tra) applied twice to (b1), (b2), and (b3).

Corollary 2. Let T be a set of fuzzy attribute implications. T is syntactically
closed iff T is semantically closed.

Theorem 1 (completeness). Let L and Y be finite. Let T be a set of fuzzy
attribute implications. Then

T ` A ⇒ B iff ||A ⇒ B||T = 1.

Proof. Sketch: Denote by syn(T ) the least syntactically closed set of fuzzy at-
tribute implications which contains T . It can be shown that syn(T ) = {A ⇒
B |T ` A ⇒ B}. Furthermore, denote by sem(T ) the least semantically closed
set of fuzzy attribute implications which contains T . It can be shown that
sem(T ) = {A ⇒ B | ||A ⇒ B||T = 1}. To prove the claim, we need to show
syn(T ) = sem(T ). As syn(T ) is syntactically closed, it is also semantically closed
by Corollary 2 which means sem(syn(T )) ⊆ syn(T ). Therefore, by T ⊆ syn(T )
we get

sem(T ) ⊆ sem(syn(T )) ⊆ syn(T ).
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In a similar manner we get syn(T ) ⊆ sem(T ), showing syn(T ) = sem(T ). The
proof is complete.

Graded completeness

In this section, we define a notion of a degree |A ⇒ B|T of provability of a fuzzy
attribute implication from a fuzzy set T of attribute implications. Then, we show
that |A ⇒ B|T = ||A ⇒ B||T which can be understood as a graded completeness
(completeness in degrees). Note that graded completeness was introduced by
Pavelka [25], see also [16, 20] for further information.

For a fuzzy set T of fuzzy attribute implications and for A ⇒ B we define a
degree |A ⇒ B|T ∈ L to which A ⇒ B is provable from T by

|A ⇒ B|T =
∨
{c ∈ L | c(T ) ` A ⇒ c⊗B}, (17)

where c(T ) is defined by (13).

Theorem 2 (graded completeness). Let L and Y be finite. Then for every
fuzzy set T of fuzzy attribute implications and A ⇒ B we have |A ⇒ B|T =
||A ⇒ B||T .

Proof. Consequence of Corollary 1 and Theorem 1.

3.4 Alternative axiomatizations and further derived rules

Our axioms (Ax), (Cut), and (Mul) have the following form: (Ax) and (Cut)
result from an ordinary complete system by replacing sets by fuzzy sets and
(Mul) is new axiom for fuzzy setting.

Note that for L = 2 (two-element Boolean algebra, ordinary case), (Ax)–
(Mul) form a complete system but (Mul) can be omitted since it either becomes
“from A ⇒ B infer A ⇒ B” (for c = 1), or “from A ⇒ B infer ∅ ⇒ ∅” (for
c = 0), cf. Remark 3 (3).

As it can be expected, adding (Mul) to any system of deduction rules, which
results from a complete system by replacing sets by fuzzy sets, yields a complete
system:

Theorem 3. Let RArm be a system of deduction rules obtained from a complete
system of ordinary deduction rules, i.e. equivalent to Armstrong axioms, by re-
placing symbols of sets by symbols of fuzzy sets. Then (Ax)–(Mul) are equivalent
to rules consisting of those from RArm plus (Mul).

Proof. Follows from the fact that rules from RArm are equivalent to (Ax) and
(Cut).

Therefore, as in case of (Ax)–(Mul), we can have a system consisting of
“ordinary deduction rules” and “fuzzy deduction rules”. However, there are also
complete systems with “mixed deduction rules”. Consider the following rules
(these rules were shown to be complete in [11]).
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(Ax’) infer A ⇒ S(B,A)⊗B,
(Wea’) from A ⇒ B infer A ∪ C ⇒ B,
(Cut’) from A ⇒ e⊗B and B ∪ C ⇒ D infer A ∪ C ⇒ e∗ ⊗D

for each A,B,C, D ∈ LY , and e ∈ L.

Theorem 4. (Ax)–(Mul) are equivalent to (Ax’)–(Cut’).

Proof. “⇒”: (Ax’) is an instance of (Ax) because S(B,A) ⊗ B ⊆ A. (Wea’) is
equivalent to (Wea). (Cut’): let ` A ⇒ e⊗B and ` B ∪ C ⇒ D. Then
` e∗ ⊗ (B ∪ C) ⇒ e∗ ⊗D by (Mul),
` (e⊗B) ∪ C ⇒ e∗ ⊗D by (Wea),
` A∪C ⇒ e∗⊗D by (Cut). Hence, (Ax’)–(Cut’) can be derived from (Ax)–(Mul).

“⇐”: (Ax) is of the form A ⇒ B, where B ⊆ A. Clearly, this is an instance
of (Ax’) for S(B,A) = 1. (Cut) is an instance of (Cut’) for e = 1. (Mul): since
c∗ ⊗ A ⇒ c∗ ⊗ A is an instance of (Ax’), we get c∗ ⊗ A ⇒ c∗∗ ⊗ B by (Cut’)
applied on c∗ ⊗A ⇒ c∗ ⊗A and A ⇒ B; (5) gives that c∗ ⊗A ⇒ c∗∗ ⊗B equals
c∗ ⊗A ⇒ c∗ ⊗B which is the desired formula. We showed that (Ax)–(Mul) can
be derived from (Ax’)–(Cut’).

Another complete system of rules consists of (Ref), (Cut), and a rule

(S) from A ⇒ B infer C ⇒ S(A,C)∗ ⊗B,

where A,B, C ∈ LY :

Theorem 5. (Ax)–(Mul) are equivalent to (Ref), (Cut), and (S).

Proof. “⇒”: Instead of directly showing the derivations of (Ref), (Cut), and (S)
from (Ax)–(Mul), the fact that (Ref), (Cut), and (S) are derivable from (Ax)–
(Mul) follows from completeness of (Ax)–(Mul) by observing that (Ref), (Cut),
and (S) are sound (we omit the the proof soundness). Namely, soundness of a
rule “from ϕ1, . . . , ϕn infer ϕ” implies

||ϕ||{ϕ1,...,ϕn} = 1

from which we get by completeness of (Ax)–(Mul) that {ϕ1, . . . , ϕn} ` ϕ, which
means that a rule “from ϕ1, . . . , ϕn infer ϕ” is derivable from (Ax)–(Mul).

“⇐”: By (Ref), we get B ⇒ B. Now, apply (S) to B ⇒ B and C = A ∪ B.
Then S(A,C)∗ = S(B,A ∪ B)∗ = 1 and thus (S) yields A ∪ B ⇒ B which
shows that (Ax) is derivable. To see that (Mul) is derivable: From A ⇒ B infer
c∗ ⊗A ⇒ S(A, c∗ ⊗A)∗ ⊗B by (S). Now, use (Ax) to infer S(A, c∗ ⊗A)∗ ⊗B ∪
c∗ ⊗B ⇒ c∗ ⊗B and observe that since c∗ ⊗B ⊆ S(A, c∗ ⊗A)∗ ⊗B, we in fact
inferred S(A, c∗⊗A)∗⊗B ⇒ c∗⊗B. Since (Tra) is an instance of (Cut), we can
apply it to see that c∗ ⊗A ⇒ c∗ ⊗B can be inferred from A ⇒ B.

For L-sets A,B ∈ LY define a degree A ≈ B of equality of A and B by

A ≈ B =
∧

y∈Y

A(y) ≈ B(y).
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Note that A ≈ B is a truth degree of “for each y ∈ Y : y belongs to A iff y
belongs to B” and that ≈ is a fuzzy equivalence relation [3]. Moreover, A ≈ B
can be seen as a degree of similarity of A and B. It might be interesting to see
what rules are derivable from (Ax)–(Mul) which say that from A ⇒ B one can
infer C ⇒ D (or some modification of it) such that C is similar to A (or almost
a subset or a superset of A) and D is similar to B (or almost a subset or a
superset of B). The following theorem shows two examples.

Theorem 6. The following deduction rules are derivable from (Ax)–(Mul):

(Sub) from A ⇒ B infer C ⇒ D ⊗ S(A,C)∗ ⊗ S(D,B),
(Sim) from A ⇒ B infer C ⇒ D ⊗ (A ≈ C)∗ ⊗ (D ≈ B),

for each A,B,C, D ∈ LY .

Proof. The assertion can be shown using completeness of (Ax)–(Mul) by observ-
ing that (Sub) and (Sim) are sound, cf. proof of Theorem 5.

Remark 4. (1) It can be shown that if ||A ⇒ B||〈X,Y,I〉 = 1 (i.e., A ⇒ B is fully
true in a data table 〈X, Y, I〉) then ||C ⇒ D||〈X,Y,I〉 ≥ (A ≈ C)∗ ⊗ (D ≈ B).
This can be interpreted in the following way. If we would infer C ⇒ D from
A ⇒ B, our derivation would be “sound in degree at least (A ≈ C)∗⊗(D ≈ B)”.
Theorem 6 shows that, if we infer C ⇒ D ⊗ (A ≈ C)∗ ⊗ (D ≈ B) instead, our
derivation is sound.

(2) Note that (S) is an instance of (Sub) for B = D.

3.5 Concluding remarks

We showed a complete set of derivation rules for fuzzy attribute logic consisting
of “ordinary rules” and “fuzzy rules”. We proved both (the usual) completeness
and graded completeness and showed some equivalent systems of derivation rules.
Note that in [6, 8, 10] we described how to obtain a complete and non-redundant
basis of the set of all fuzzy attribute implications which are fully true in a given
data table with fuzzy attributes provided ∗ is globalization and several other
results concerning fuzzy attribute implications. Our future research will focus
on:

– computation of non-redundant bases of fuzzy attribute implications for other
hedges than globalization,

– relationships between fuzzy attribute logic and (ordinary) attribute logic
(with the aim to study usual logical relationships like embedding etc.),

– relationships of fuzzy attribute logic and functional dependencies of database
relations over domains with fuzzy similarity relations (first draft is [12]).
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8. Bělohlávek R., Vychodil V.: Implications from data with fuzzy attributes vs. scaled
binary attributes. In: FUZZ-IEEE 2005, The IEEE International Conference on
Fuzzy Systems, May 22–25, 2005, Reno (Nevada, USA), pp. 1050–1055 (proceed-
ings on CD), abstract in printed proceedings, p. 53, ISBN 0–7803–9158–6.
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