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Abstract. The paper presents new developments in an extension of
Codd’s relational model of data. The extension consists in equipping do-
mains of attribute values with a similarity relation and adding ranks to
rows of a database table. This way, the concept of a table over domains
(i.e., relation over a relation scheme) of the classical Codd’s model ex-
tends to the concept of a ranked table over domains with similarities.
When all similarities are ordinary identity relations and all ranks are
set to 1, our extension becomes the ordinary Codd’s model. The main
contribution of our paper is twofold. First, we present an outline of a re-
lational algebra for our extension. Second, we deal with implementation
issues of our extension. In addition to that, we also comment on related
approaches presented in the literature.

1 Introduction

1.1 Motivation and Outline of the Paper

Most of the current database systems are based on the well-known Codd’s re-
lational model of data: “A hundred years from now, I’m quite sure, database
systems will still be based on Codd’s relational foundation.” [9, p. 1]. Main
virtues of Codd’s model are due to the reliance of the model on a simple yet
powerful mathematical concept of a relation and first-order logic: “The relational
approach really is rock solid, owing (once again) to its basis in mathematics and
predicate logic.” [9, p. 138].

Our paper is concerned with a particular extension of the relational model
which is concerned with imprecision and uncertainty. Management of uncertainty
and imprecision is one of the six currently most-important research directions
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M.R. Berthold, J. Shawe-Taylor, and N. Lavrač (Eds.): IDA 2007, LNCS 4723, pp. 140–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Relational Algebra for Ranked Tables with Similarities 141

Table 1. Ranked data table over domains with similarities

D(t)
1.0
1.0
0.9
0.8
0.4
0.3

name age education
Adams 30 Comput. Sci.
Black 30 Comput. Eng.
Chang 28 Accounting
Davis 27 Comput. Eng.
Enke 36 Electric. Eng.
Francis 39 Business

n1 ≈n n2 =
{

1 if n1 = n2

0 if n1 �= n2

a1 ≈a a2 = sa(|a1 − a2|)
with scaling sa : Z

+ → [0, 1]

≈e A B CE CS EE

A 1 .7
B .7 1
CE 1 .9 .7
CS .9 1 .6
EE .7 .6 1

proposed in the report from the Lowell debate by 25 senior database researchers
[1]: “. . . current DBMS have no facilities for either approximate data or imprecise
queries.” Similarity, approximate matches, similarity-based queries, and related
issues are the main motivations for our extension of the relational model. These
issues are not new and have been approached in numerous papers in the past.
The issues result in situations when one considers similarity of elements of do-
mains rather than exact equality, i.e. when it is desirable to consider degrees of
similarity rather than just “equal” and “not equal”. For example, consider at-
tribute age. The corresponding domain consists of positive integers. One might
be interested in all persons in a given database with age equal to 30. Such a
query is typical in the classical relational model (in terms of relational algebra:
selection of all tuples with attribute age = 30). One might, however, be also
interested in all persons in the database with age approximately 30. Intuitively,
a person with age 30 satisfies this query completely (degree of satisfaction is
1.0), a person with age 29 satisfies this query rather well (degree of satisfaction
is, say, 0.9), a person with age 25 satisfies this query but only to a small degree
(say, 0.2), etc. The above degrees are, in fact, degrees of similarity, see [23], of
the actual age to the reference age 30, i.e. 1.0 is a degree of similarity of 30 to
30, 0.9 is a degree of similarity of 29 to 30, 0.2 is a degree of similarity of 25
to 30. Of course, the degrees depend on how the similarity relation is defined.
The above example, however simple, clearly demonstrates that taking similarity
into account leads to qualitatively new features in querying and manipulation
of data. Our attempt in previous papers as well as in this paper is to develop
systematically an extension of the classical Codd’s relational model which would
play the same role in case when similarities are considered as the ordinary Codd’s
model plays in the classical case.

The main concept in our approach is that of a ranked data table (relation)
over domains with similarities, see Tab. 1. This concept is our counterpart to the
concept of a data table (relation) over domains of a classical relational model.
A ranked data table over domains with similarities consists of three parts: data
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table (relation), domain similarities, and ranking. The data table (right top ta-
ble in Tab. 1) coincides with a data table of a classical relational model. Domain
similarities and ranking are what makes our model an extension of the clas-
sical model. The domain similarities (bottom part of Tab. 1) assign degrees of
similarity to pairs of values of the respective domain. For instance, a degree of
similarity of “Computer Science” and “Computer Engineering” is 0.9 while a
degree of similarity of “Computer Science” and “Electrical Engineering” is 0.6.
The ranking assigns to each row (tuple) of the data table a degree of a scale
bounded by 0 and 1 (left top table in Tab. 1), e.g. 0.9 assigned to the tuple
〈Chang, 28, Accounting〉. The ranking allows us to view the ranked table as an
answer to a similarity-based query (rank = degree to which a tuple matches a
query). For instance, the ranked table of Tab. 1 can result as an answer to query
“show all candidates with age about 30”. In a data table representing stored
data (i.e. prior to any querying), ranks of all tuples of the table are equal to 1.
Therefore, the same way as tables in the classical relational model, ranked tables
represent both stored data and outputs to queries. This is an important feature
of our model.

We use fuzzy logic as our formal framework. We use a formal system of first-
order fuzzy logic the same way as the system of first-order classical logic is used
in the classical relational model. This way, our model keeps the user-friendly
symbolical character of the classical model and adds a quantitative layer which
takes care of the management of uncertainty. This is an important distinction
from other “fuzzy approaches” to the relational model which, from our point of
view, are often ad-hoc.

In our previous papers, we developed selected issues within the framework of
our extension, e.g., functional dependencies, computation of non-redundant sets
of functional dependencies, Armstrong-like axiomatization, and related issues
are studied in [2,3,4,5].

In the present paper, we focus on relational algebra for our extension of the
relational model. In particular, we present an overview of operations of the rela-
tional algebra, present illustrative examples and selected results on properties of
the relational algebra. In addition to that, we focus on the problem of implemen-
tation of our extension. Section 1.2 briefly reviews related approaches. Section
1.3 summarizes preliminaries from fuzzy logic. In Section 2.1 we introduce our
model. Section 2.2 presents relational algebra and related results. Section 2.3
deals with implementation of our relational model. Section 3 outlines future re-
search.

1.2 Related Approaches

The first paper on a “fuzzy approach” to the relational model is [7]; [6] provides
an overview with many references. We found over 100 contributions related to
“fuzzy approach” to the relational model. A main feature of almost all of the
approaches is that they are ad-hoc in that an analogy of a clear relationship be-
tween a relational model and first-order fuzzy logic is missing in the approaches
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which leads to the impression of arbitrariness of the approaches. This is partly
because fully fledged logical calculi have not been developed until quite recently,
see e.g. [12,13]. On the other hand, several ideas including some of those pre-
sented in our paper were already discussed in the literature. For instance, the
idea of considering domains with similarity relations goes back to [7]. The idea
of assigning ranks to tuples appeared in [21] although with not quite a clear
meaning of ranks (“fuzzy measure of association among a set of domain values”
[21]).

1.3 Preliminaries

We use fuzzy logic to represent and manipulate truth degrees of propositions
like “u is similar to v”. Moreover, we need to process (aggregate) the degrees.
For instance, consider a query “show all candidates which are about 30 years old
and a degree in specialization similar to Computer Science”. According to Tab. 1,
Davis satisfies subqueries concerning age and education to degrees 0.8 and 0.9,
respectively. Then, we combine the degrees using a fuzzy conjunction connective
⊗ to get a degree 0.8 ⊗ 0.9 to which Davis satisfies the conjunctive query.

When using fuzzy logic, we have to pick an appropriate scale L of truth
degrees (which serve e.g. as grades for evaluating similarity of two objects) and
appropriate fuzzy logic connectives (conjunction, implication, etc.). We follow a
modern approach in fuzzy logic in that we take an arbitrary partially-ordered
scale 〈L, ≤〉 of truth degrees and require the existence of infima and suprema
(for technical reasons, to be able to evaluate quantifiers). Furthermore, instead
of taking one particular fuzzy conjunction ⊗ and fuzzy implication →, we take
any ⊗ and → which satisfy certain conditions. This way, we obtain a structure
L = 〈L, ≤, ⊗, →, . . . 〉 of truth degrees with logical connectives. Although more
general than one particular choice of a scale and connectives, such an approach
is easier to handle theoretically and supports the symbolical character of our
model. Technically speaking, our structure of truth degrees is assumed to be a
complete residuated lattice L = 〈L, ∧, ∨, ⊗, →, 0, 1〉, see [12,13] for details.

A favorite choice of L is L = [0, 1] or a subchain of [0, 1]. Examples of pairs of
important pairs of adjoint operations are �Lukasiewicz (a⊗ b = max(a+ b−1, 0),
a → b = min(1 − a + b, 1)), and Gödel (a ⊗ b = min(a, b), a → b = 1 if a ≤ b,
a → b = b else). Note that a special case of a complete residuated lattice is a
two-element Boolean algebra of classical (bivalent) logic.

Having L, we define usual notions [12,13,15]: an L-set (fuzzy set) A in universe
U is a mapping A : U → L, A(u) being interpreted as “the degree to which u
belongs to A”. The operations with L-sets are defined componentwise. Binary
L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets
in the universe X×Y . A fuzzy relation E in U is called reflexive if for each u ∈ U
we have E(u, u) = 1; symmetric if for each u, v ∈ U we have E(u, v) = E(v, u).
A reflexive and symmetric fuzzy relation is called a similarity. We often denote a
similarity by ≈ and use an infix notation, i.e. we write (u ≈ v) instead of ≈(u, v).
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2 Relational Algebra and Implementation of Relational
Model over Domains with Similarities

2.1 Ranked Tables over Domains with Similarities

We use Y for a set of attributes (attribute names) and denote the attributes by
y, y1, . . . ; L denotes a fixed structure of truth degrees and connectives.

Definition 1. A ranked data table over domains with similarity relations (with
Y and L) is given by

– domains : for each y ∈ Y , Dy is a non-empty set (domain of y, set of values
of y);

– similarities: for each y ∈ Y , ≈y is a binary fuzzy relation (called similarity)
in Dy (i.e. a mapping ≈y: Dy × Dy → L) which is reflexive (i.e. u ≈y u = 1)
and symmetric (u ≈y v = v ≈y u);

– ranking: for each tuple t ∈ ×y∈Y Dy, there is a degree D(t) ∈ L (called rank
of t in D) assigned to t.

Remark 1. (1) D can be seen as a table with rows and columns corresponding
to tuples and attributes, like in Tab. 1. Ranked tables with similarities represent
a simple concept which extends the concept of a table (relation) of the classical
relational model by two features: similarity relations and ranks. In the classical
relational model, similarity relations are not present.

(2) t[y] denotes a value from Dy of tuple t on attribute y. We require that
there is only a finite number of tuples with non-zero degree. If L = {0, 1} and if
each ≈y is ordinary equality, the concept of a ranked data table with similarities
coincides with that of a data table over set Y of attributes (relation over a
relation scheme Y ) of a classical model.

(3) Formally, D is a fuzzy relation between domains Dy (y ∈ Y ). Rank D(t)
is interpreted as a degree to which the tuple t satisfies requirements posed by a
query. A table D representing just stored data, i.e. data prior to querying, has
all the ranks equal to 0 or to 1, i.e. D(t) = 0 or D(t) = 1 for each tuple t. Here
again, D can be thought of as a result of a query, namely, a query “show all
stored data”.

2.2 Relational Algebra

In the classical model, relational algebra is based on the calculus of classical
relations. In the same spirit, since ranked tables are in fact fuzzy relations, our
relational algebra is based on the calculus of fuzzy relations [12,15]. Due to the
limited scope, we present only selected parts of our algebra and leave details and
further parts to a full version of the paper.
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Table 2. Ranked tables over domains with similarities

D1(t)
1.0
0.9
0.1

name age education
Black 30 Comput. Eng.
Chang 28 Accounting
Francis 39 Business

D2(t)
1.0
0.8
0.5
0.4
0.3

name age education
Adams 30 Comput. Sci.
Davis 27 Comput. Eng.
Black 30 Comput. Eng.
Enke 36 Electric. Eng.
Francis 39 Business

Operations of our relational algebra can be basically classified as follows.

Counterparts to Boolean operations of classical model. These are operations like
union, intersection, etc. For instance, a union D1 ∪D2 of two ranked tables with
similarities, D1 and D2, is defined by

[D1 ∪ D2](t) = D1(t) ∨ D1(t).

This says that a rank of t in D1 ∪ D2 is given by taking a rank of t in D1 and a
rank of t in D2, and applying ∨ to these ranks. In most situations, ∨ coincides
with maximum. Therefore, [D1 ∪D2](t) is just the maximum of D1(t) and D2(t).
For example, the ranked table D from Tab. 1 is a result of union of ranked tables
D1 and D2 depicted in Tab. 2, i.e. D = D1 ∪ D2.

More generally, for any binary (and similar for other arities) operation �
with fuzzy relations, we define a corresponding operation (denoted again) �
which yields for any two ranked tables D1 and D2 (with common Y , domains,
and similarities) a ranked table D assigning to any tuple t a rank D(t) defined
componentwise by

D(t) = D1(t) � D2(t).

New operations based on calculus of fuzzy relations. The calculus of fuzzy rela-
tions contains operations which either have no counterparts with classical rela-
tions or the counterparts are trivial. An interesting example is a so-called a-cut
of a fuzzy relation. For a ranked table D and a rank a ∈ L, an a-cut of D is a
ranked table aD defined by

[aD](t) =
{

1 if D(t) ≥ a,
0 otherwise.

That is, aD is a non-ranked table which contains those tuples of D with ranks
greater or equal to a. This is quite a natural operation for manipulation of
ranked tables which allows the user to select only a part of a query result given
by threshold a.

Note that in combination with intersection, we can use a-cut to get the part
of D with ranks at least a, i.e. we can get Abovea(D) defined by

[Abovea(D)](t) =
{

D(t) for D(t) ≥ a,
0 otherwise.

Namely, we have
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Table 3. Results of Above0.7 and σe=CE applied to D from Tab. 1

[Above0.7(D)](t)
1.0
1.0
0.9
0.8

name age education
Adams 30 CS
Black 30 CE
Chang 28 AC
Davis 27 CE

D(t)
1.0
0.9
0.8
0.1

name age education
Black 30 CE
Adams 30 CS
Davis 27 CE
Enke 36 EE

Lemma 1. For D, a ∈ L, we have Abovea(D) = D ∩ aD.

For instance, Above0.7(D) for D from Tab. 1 is depicted in Tab. 3 (left).

Counterparts to selection, join, projection, etc. These operations stem basically
from the classical ones by taking into account similarity relations (or, in general
fuzzy relations θ in place of classical comparators). For illustration, we consider
only a similarity-based selection and a similarity-based join.

The basic form of selection works as follows. Given a value u ∈ Dy, a select
operator with inputs y = u yields a ranked table σy=u(D) for which a rank of a
tuple t ∈ ×y∈Y Dy is given by

D(t) ⊗ (t[y] ≈y u),

i.e.
[σy=u(D)](t) = D(t) ⊗ (t[y] ≈y u),

[σy=u(D)](t) can be read as follows: One takes a degree D(t) (rank of t in D)
and a degree t[y] ≈y u (degree of similarity between t[y] and u) and applies a
“fuzzy conjunction” ⊗ to D(t) and t[y] ≈y u. That is, a rank of t in σy=u(D) can
be seen as a truth degree of proposition “t is in D and the value of t in attribute
y is similar to u”. Tab. 3 (right) shows σe=CE(D) (e denotes “education”, CE
denotes “Computer Engineering”) for D from Tab. 1 for ⊗ being �Lukasiewicz
conjunction.

As in the ordinary case, selection can be extended to several input values.
Given D, a select operator with inputs given by y1 = u1, . . . , yk = uk yields a
ranked table σy1=u1,...,yk=uk

(D) for which a rank of a tuple t is given by

D(t) ⊗ (x[y1] ≈y1 u1) ⊗ · · · ⊗ (x[yk] ≈yk
uk),

i.e. a degree of “t is in D and value of t in y1 is similar to u1 and · · · and value
of t in yk is similar to uk”.

To illustrate similarity-based join, consider a ranked table D1 from Tab. 1
which can be thought of as a result to a query “select candidates with age about
30”) and a ranked table D2 from Tab. 4 (left) describing open positions with
required education. A similarity-based join D1 �� D2 then describes possible job
assignments. A rank [D1 �� D2](n, a, e, p) of tuple 〈n, a, e, p〉 in D1 �� D2 is given
by ∨

e1,e2
(D1(n, a, e1) ⊗ (e1 ≈e e) ⊗ (e ≈e e2) ⊗ D2(p, e2))
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Table 4. Illustration of similarity-based join

D(t)
1.0
1.0

position education
programmer Comput. Sci.
syst. technician Comput. Eng.

D(t)
1.0
1.0
0.9
0.9

name position
Adams programmer
Black syst. technician
Adams syst. technician
Black programmer

where e1, e2 range over the domain corresponding to education. That is, the join
runs not only over equal values but also over similar values. [D1 �� D2](n, a, e, p)
can be seen as a truth degree of “candidate with name n, age a, and education
e1 belongs to table D1 and e1 is similar to e2 and e2 is a required education for
position p”. The table of Tab. 4 (right) shows a result of Above0.9(D1 �� D2), cf.
above, projected to name and position.

Further operations. Among others, here belong some interesting operations stud-
ied in databases and information retrieval. As an example, consider topk which
gained a considerable interest recently, see [10,11] and also [14]. We define
topk(D) to contain the first k tuples (according to rank ordering) of D with
their ranks (if there are less than k ranks in D then topk(D) = D; and topk(D))
includes also the tuples with rank equal to the rank of the k-th tuple). Note
that topk is a part of a query language described in [19]. As presented in [4],
topk is indeed a relational operator, i.e. there is a corresponding formula in the
corresponding relational calculus which is based on first-order fuzzy logic.

Remark 2. In [4], we presented a tuple and domain relational calculi for our
relational algebra with the completeness theorem.

We obtained several results on properties of the operations of our relational
algebra which are analogous to properties of classical relational algebra. Due to
the limited scope, we present just the following properties of selection:

Lemma 2. For D and ui ∈ Dyi we have

σy1=u1,...,yk=uk
(D) = σy1=u1(· · · (σyk=uk

(D)) · · · ),
σy1=u1(σy2=u2(D)) = σy2=u2(σy1=u1(D)).

2.3 Implementation Issues

This section presents, by means of examples, considerations on and proposal of
implementation of the extended relational model. Our basic aim to make use of
existing relational database management systems (RDBMS) and to develop a
prototype implementation of the extension by ranks and similarities. We used a
RDBMS Oracle9i, query language SQL, and its procedural extension PL/SQL.
Oracle9i enables us to use stored procedures and functions. This feature enables
us to store with a database scheme some functions that can be used in SQL
queries and other SQL statements.
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We did use stored functions to implement similarity relations on particular
domains. Recall that a similarity relation on a domain Dy is, in fact, a function
of the Cartesian product Dy × Dy into a scale L of truth degrees, e.g. into [0, 1].
For example, a function sim age implementing similarity ≈age on the domain of
ages (see Table 1) can be defined by

CREATE FUNCTION sim_age(age1 NUMBER, age2 NUMBER)
RETURN NUMBER IS

x NUMBER;
BEGIN
x := 1 - abs(age1-age2)/SCON;
IF x < 0 THEN

x := 0;
END IF;
RETURN NUMBER(x);

END sim_age;

where SCON is an appropriate scaling constant. Similarities on non-numerical
domains Dy can be implemented as relations over relation scheme given by
three attributes: y (first), y (second), and an attribute representing truth de-
grees (third). For instance, if we consider the ranked data table from Tab. 1, the
information about the similarity on the domain of education can be stored in a
data base table which is created by the following SQL command:

CREATE TABLE sim_education_tab (
val1 VARCHAR (30) NOT NULL,
val2 VARCHAR (30) NOT NULL,
degree NUMBER NOT NULL,
PRIMARY KEY (val1, val2),
CHECK (val1 < val2)

);

Notice that val1 and val2 are string attributes representing education descrip-
tions and degree is their similarity degree. Since similarity relations are re-
flexive, there is no need to store information about similarities when val1 and
val2 agree on their values. Furthermore, similarity relations are always sym-
metric. Hence, if sim_education_tab contains information about the similarity
degree for val1 = e1 and val2 = e2, there is no need to store the informa-
tion for val1 = e2 and val2 = e1. Since the domain of education descriptions,
which are encoded by strings of literals, can be lexically ordered, we can store
in sim_education_tab only records representing similarities of education val-
ues val1 = e1 and val2 = e2 such that e1 is lexically smaller than e2 and
e1 ≈e e2 > 0. The latter SQL command creates sim_education_tab with ex-
plicit constraint saying that the value of val1 should be lexically smaller than
the value of val2 which reflects the organization of the data table just men-
tioned. The table sim_education_tab has a primary key {val1, val2}. In most
RDBMS the definition of such a primary key is accompanied by creation of
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a unique multi-column index which can significantly improve the efficiency of
querying sim_education_tab regarding the similarity degree. Following the ex-
ample from Tab. 1, sim_education_tab can be filled as follows:

INSERT INTO sim_education_tab VALUES (’A’, ’B’, 0.7);
INSERT INTO sim_education_tab VALUES (’CE’, ’CS’, 0.9);
INSERT INTO sim_education_tab VALUES (’CE’, ’EE’, 0.7);
INSERT INTO sim_education_tab VALUES (’CS’, ’EE’, 0.6);

In order to achieve flexibility, we should create a stored function sim_education
(its source code is not shown here) which given two education descriptions
returns their similarity degree, querying the sim_education_tab table. Using
functions implementing similarities on domains and using standard features of
SQL, one can implement queries corresponding to the operations of the relational
algebra for ranked tables over domains with similarities.

The similarity-based queries are intended to query ranked tables, i.e. the ar-
guments of similarity-based queries are, in principle, ranked tables. In a con-
ventional RDBMS, a ranked table over relation scheme Y can be represented
as a relation over relation scheme Y to which we add an attribute for ranks
(first column). However, from the users’ point of view, it is convenient to have
the option to apply similarity-based queries to ordinary relations (i.e., tables
without ranks) as well. Suppose that we have in our RDBMS a relation (called
candidates) depicted in Tab. 1 (without ranks) and want to see the candidates
with age similar to 30. This can be accomplished by SQL statement

SELECT sim_age(age, 30) AS sim_age_30, *
FROM candidates
ORDER BY sim_age_30 DESC;

The result is a relation with the first column representing ranks. In terms of
our relational algebra, this ranked table is a result of σage=30(D) where D is the
table from Tab. 1. In a similar way, using a function implementing fuzzy logical
conjunction, one can form SQL statements implementing queries like “select
candidates with age around 30 and education similar to electrical engineering”.
For instance, the standard �Lukasiewicz conjunction can be represented by the
following stored function:

CREATE FUNCTION luk_conj(degree1 NUMBER, degree2 NUMBER)
RETURN NUMBER IS

x NUMBER;
BEGIN
x := degree1 + degree2 - 1;
IF x < 0 THEN

x := 0;
END IF;
RETURN NUMBER(x);

END luk_conj;
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Using luk_conj together with sim_age and sim_education, we can formulate
the above-mentioned similarity-based query as follows:

SELECT luk_conj(sim_age(age, 30),
sim_education(education, ’EE’)) AS sim, *

FROM candidates
ORDER BY sim DESC;

Remark 3. Note that we have not discussed here a user-friendly syntax of an
extension of standard SQL which would enable the user to express similarity-
based queries in a comfortable form. Such an extension can be accomplished,
e.g., by devising a preprocessor which would translate statements of the SQL
extension to statements of ordinary SQL. Due to the limited scope, we do not
deal with this issue in the present paper. Our intention was to demonstrate that
the similarity-based queries can be implemented by means of the stored functions
for similarities and by means of the standard SQL.

3 Future Research

Main topics for future research are:

– development of relational algebra with focus on new (non-standard) opera-
tions and features;

– development of prototype implementation of the extended Codd’s model by
means of existing relational data base management systems;

– design of an extension of standard SQL for the extended Codd’s model and
its implementation (some proposals for “fuzzy SQL” can be found in the
literature but our relational model of data is different from the respective
models in the literature);

– development of standard issues from relational databases in our extended
setting (e.g., data dependencies, redundancy, normalization, and design of
databases, optimization issues, etc.).
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