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Abstract— We present extensions of ordinary compositions
of fuzzy relations. The extensions consist in parameterizing the
ordinary compositions by means of particular unary functions
on the scales of truth degrees. The approach is inspired by our
previous work on formal concept analysis of data with fuzzy
attributes where such parameterization of one particular type
of fuzzy relational composition was used to control the number
of clusters extracted from data. We present definitions and
basic properties of the parameterized compositions, examples,
and implications for several domains of application of fuzzy
relational compositions.

I. INTRODUCTION

Fuzzy relations are the basic tool in most of the ap-
plications of fuzzy logic. The concept of a fuzzy relation
generalizes the concept of an ordinary relation. Likewise,
the calculus of fuzzy relations generalizes the calculus of or-
dinary relations. Among the important operations with fuzzy
relations are various types of composition of fuzzy relations.
In our paper, we will focus on so-called ◦-composition, �-
composition, and �-composition. These compositions were
studied by Bandler and Kohout, see [2], [3], and also [4].

We propose and investigate a simple extension of the
above-mentioned compositions which results by inserting a
particular unary function on the set of truth degrees in the
standard definition of compositions. The functions we con-
sider are truth functions of logical connectives “very true”,
called truth-stressing hedges, which were studied in fuzzy
logic in narrow sense. Particular cases of our parameterized
composition of fuzzy relations were used in the investigation
to formal concept analysis of data with fuzzy attributes
[8]. Two lessons can be taken from this investigation. First,
extension by hedges yields a general framework which leaves
previous attempts as particular cases. Therefore, one gets a
single theory which covers several particular instances. Sec-
ond, extension by hedges yields a parameterized approach.
In the particular case of formal concept analysis, the role of
a hedge is to control the size of extracted clusters from data.

This paper attempts to generalize our previous experience
and to introduce compositions of fuzzy relations parameter-
ized by hedges. After introducing preliminaries in Section II,
we present definitions and basic properties of compositions
with hedges in Section III. In Section IV we present appli-
cations of our approach. Section V presents topics for future
research.
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II. PRELIMINARIES

In this section we present an overview of notions of
fuzzy logic and fuzzy set theory we will be using in this
paper. Details can be found e.g. in [4], [12], [14], a good
introduction to fuzzy logic and fuzzy sets is presented in [16].

A. Complete Residuated Lattices

Our approach to fuzzy sets and fuzzy relations is based
on complete residuated lattices which are used as basic
structures of truth degrees. A complete residuated lattice
[4], [14] is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that
〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the
least and greatest element of L, respectively; 〈L,⊗, 1〉 is a
commutative monoid (i.e. ⊗ is commutative, associative, and
a ⊗ 1 = 1 ⊗ a = a for each a ∈ L); ⊗ and → satisfy so-
called adjointness property: a⊗b ≤ c iff a ≤ b → c for each
a, b, c ∈ L. That fact that 〈L,∧,∨, 0, 1〉 is a complete lattice
means that general infima

∧
i∈I ai and general suprema∨

i∈I ai exist for any subset {ai | i ∈ I} ⊆ L. As it is usual
in the context of fuzzy logic, elements a ∈ L are called
truth degrees. Operations ⊗ and → are truth functions of
logical connectives “fuzzy conjunction” (also called “multi-
plication”) and “fuzzy implication” (also called “residuum”).
For each complete residuated lattice L, we consider a derived
binary operation ↔ (“fuzzy equivalence/biconditional” also
called “biresiduum”) defined, for each a, b ∈ L, by a ↔ b =
(a → b)∧(b → a). We denote by ≤ the lattice order induced
by L. Using the adjointness property a ≤ b iff a → b = 1.
Complete residuated lattice L is called linearly ordered (or
a chain) if, for each a, b ∈ L, a ≤ b or b ≤ a.

The most important complete residuated lattices are those
defined on the real unit interval. In such a case, L is a
structure with L = [0, 1] (unit interval), ∧ and ∨ being
minimum and maximum, ⊗ being a left-continuous t-norm
with the corresponding →. Three most important pairs of
adjoint operations on the unit interval are: Łukasiewicz:
a ⊗ b = max(0, a + b − 1), a → b = min(1, 1 − a + b);
Gödel (minimum): a ⊗ b = a ∧ b, a → b = b for a > b
and a → b = 1 for a ≤ b; Goguen (product): a ⊗ b = a · b,
a → b = b

a for a > b and a → b = 1 for a ≤ b.
A special case of a complete residuated lattice is the two-

element Boolean algebra 〈{0, 1},∧,∨,⊗,→, 0, 1〉, denoted
by 2, which is the structure of truth degrees of the classi-
cal logic. That is, the operations ∧,∨,⊗,→ of 2 are the
truth functions (interpretations) of the corresponding logical
connectives of the classical logic.

Throughout the rest of the paper, L denotes an arbitrary
complete residuated lattice.
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Fig. 1. Hedges on a five-element Łukasiewicz chain

B. Truth-Stressing Hedges

Complete residuated lattices can be equipped with addi-
tional fundamental operations. In this paper, we are going to
use particular unary operations called truth-stressing hedges.
An idempotent truth-stressing hedge (shortly, a hedge) on
a complete residuated lattice L is a mapping ∗ : L → L
satisfying the following conditions

1∗ = 1, (1)

a∗ ≤ a, (2)

(a → b)∗ ≤ a∗ → b∗, (3)

a∗∗ = a∗, (4)

for each a, b ∈ L. Truth-stressing hedges were investigated
from the point of view of fuzzy logic in narrow sense by
Hájek [15] who showed complete axiomatizations of BL-
logics equipped with unary connectives “very true”. Our
approach to hedges is close to that in [15] although the
conditions postulated in [15] are a bit different. Unlike [15],
we use the additional condition of idempotency (4). On the
other hand, we do not use

(a ∨ b)∗ ≤ a∗ ∨ b∗ (5)

which is required in (4) for the sake of axiomatization. In
order to have desirable properties of compositions of fuzzy
relations with hedges, we will postulate further requirements.
One of them will be a stronger version on Hájek’s (5).

Let us note that properties (2)–(4) have natural interpre-
tations. For instance, (2), called subdiagonality, can be read:
“if a is very true, then a is true”; (3) can be read: “if a → b
is very true and if a is very true, then b is very true”, etc.

On each complete residuated lattice L, there are two
important truth-stressing hedges:

(i) identity, i.e. a∗ = a (a ∈ L);

(ii) globalization [17], i.e.

a∗ =
{

1, if a = 1,
0, otherwise.

(6)

Note that globalization agrees with Baaz’s ∆-operation [1]
in case of linearly ordered residuated lattices.

Example 1: Let L be a finite residuated lattice with L =
{0, 0.25, 0.5, 0.75, 1}, ∧ and ∨ being minimum and max-
imum, respectively, ⊗ be the Łukasiewicz conjunction on

L with its residuum →. There are five idempotent truth-
stressing hedges on L. The hedges are depicted by their
diagrams in Fig. 1. The left-most hedge ∗1 is globalization,
see (6). On the contrary, the right-most hedge ∗5 is identity.
There are three intermediate hedges ∗2, ∗3, and ∗4. For
instance, in case of ∗2, we have 0∗2 = 0.25∗2 = 0, 0.5∗2 =
0.75∗2 = 0.5, and 1∗2 = 1.

Example 2: There is just one hedge on the two-element
Boolean algebra 2. Namely, hedge ∗ such that 0∗ = 0 and
1∗ = 1. Hence, in case of the two-element Boolean algebra,
globalization coincides with identity.

C. Fuzzy Sets and Fuzzy Relations

Suppose that L is our structure of truth degrees. We define
usual notions: a fuzzy set (an L-set) A in universe U is
a mapping A : U → L, A(u) being interpreted as “the
degree to which u belongs to A”. Operations with fuzzy sets
are defined componentwise. For instance, the intersection of
fuzzy sets A,B ∈ LU is a fuzzy set A ∩ B in U such that
(A ∩ B)(u) = A(u) ∧ B(u) for each u ∈ U , etc. A binary
fuzzy relation (a binary L-relation) I between X and Y is a
mapping I : X × Y → L, I(x, y) being interpreted as “the
degree to which x and y are related by I”. By definition, a
binary fuzzy relation I : X × Y → L is a fuzzy set in the
universe X × Y , i.e. I ∈ LX×Y .

In the following we use well-known properties of resid-
uated lattices, fuzzy sets, and fuzzy relations which can be
found in monographs [4], [12], [14], [16].

III. COMPOSITIONS OF FUZZY RELATIONS WITH HEDGES

Throughout this section, we assume that R and S are L-
relations between X and Y , and Y and Z, respectively. Let
us recall the definition of ◦-composition, �-composition, and
�-composition of fuzzy relations, see e.g. [2], [3], [4].

(R ◦ S)(x, z) =
∨

y∈Y

(
R(x, y) ⊗ S(y, z)

)
, (7)

(R � S)(x, z) =
∧

y∈Y

(
R(x, y) → S(y, z)

)
, (8)

(R � S)(x, z) =
∧

y∈Y

(
S(y, z) → R(x, y)

)
, (9)

for all x ∈ X , z ∈ Z. (R ◦ S)(x, z) is the truth degree
of proposition “there is y ∈ Y such that 〈x, y〉 is in R and
〈y, z〉 is in S”. (R � S)(x, z) is the truth degree of proposition
“for every y ∈ Y : if 〈x, y〉 is in R then 〈y, z〉 is in S”.
(R � S)(x, z) is the truth degree of proposition “for every
y ∈ Y : if 〈y, z〉 is in S then 〈x, y〉 is in R”. The following
definition presents our extension.

Definition 1: Let R and S be L-fuzzy relations between
X and Y and between Y and Z. Fuzzy relations (R ◦∗ S),
(R �∗ S), and (R �∗ S) between X and Z are defined by

(R ◦∗ S)(x, z) =
∨

y∈Y

(
R(x, y)∗ ⊗ S(y, z)

)
, (10)

(R �∗ S)(x, z) =
∧

y∈Y

(
R(x, y)∗ → S(y, z)

)
, (11)

(R �∗ S)(x, z) =
∧

y∈Y

(
S(y, z)∗ → R(x, y)

)
, (12)

for all x ∈ X , z ∈ Z.



Remark 1: (1) Obviously, one could insert the hedge ∗

at other places, too, in the definition of fuzzy relational
compositions. Our motivation for inserting the hedges in
the above definition comes from the fact that we use such
compositions in examples below.

(2) (R ◦∗ S)(x, z) is the truth degree of proposition “there
is y ∈ Y such that it is very true that 〈x, y〉 is in R and 〈y, z〉
is in S”. (R �∗ S)(x, z) is the truth degree of proposition “for
every y ∈ Y : if it is very true that 〈x, y〉 is in R then 〈y, z〉
is in S”. (R � S)(x, z) is the truth degree of proposition “for
every y ∈ Y : if it is very true that 〈y, z〉 is in S then 〈x, y〉
is in R”.

(3) Obviously, if ∗ is the identity, (10), (11), and (12)
become (7), (8), and (9). In this sense, the new compositions
generalize the ordinary ones.

Let for hedges ∗1 and ∗2 put

∗1 ≤ ∗2 iff for each a ∈ L : a∗1 ≤ a∗2 .

That is, ∗1 ≤ ∗2 means that ∗1 is stronger in that it pushes
truth degrees more toward 0. Clearly, if ∗g and ∗i denote
globalization and identity, then ∗g ≤ ∗ ≤ ∗i for every
hedge ∗. We have the following proposition:

Theorem 1: Let ∗1 ≤ ∗2. Then

R ◦∗1 S ⊆ R ◦∗2 S,

R �∗1 S ⊇ R �∗2 S,

R �∗1 S ⊇ R �∗2 S.

Proof: From monotony of ⊗
(R ◦∗1 S)(x, z) =

∨
y∈Y (R∗1(x, y) ⊗ S(y, z)) ≤

≤ ∨
y∈Y (R∗2(x, y) ⊗ S(y, z)) =

= (R ◦∗2 S)(x, z).

From antitony of → in the first argument

(R �∗1 S)(x, z) =
∧

y∈Y (R∗1(x, y) → S(y, z)) ≥
≥ ∧

y∈Y (R∗2(x, y) → S(y, z)) =

= (R �∗2 S)(x, z).

The proof of the last inequality is similar.

As a consequence, we get:

R ◦∗ S ⊆ R ◦ S,

R �∗ S ⊇ R � S,

R �∗ S ⊇ R � S.

Now, we present several properties of the compositions.
In some cases, we need additional properties of hedges. In
particular, we will use:

(a∗ ⊗ b)∗ = a∗ ⊗ b∗, (13)(∨
i∈I ai

)∗ =
∨

i∈I a∗
i , (14)(∧

i∈I ai

)∗ =
∧

i∈I a∗
i . (15)

For instance, (13) is satisfied when ∗ is identity or if ∗
satisfies a∗ ⊗ a∗ = a∗. (14) holds true in any finite chain or,
more generally, in any Noetherian chain [9], i.e. a linearly
ordered structure of truth degrees in which every subset has
a largest element (

∨
i∈I ai)∗ =

∨
i∈I a∗

i ; dually for (15).
In the following theorems we will use the corresponding

properties of ordinary products and a simple observation.
Namely, it is obvious from the definitions that

R ◦∗ S = R∗ ◦ S,

R �∗ S = R∗ � S,

R �∗ S = R � S∗.

Theorem 2 (products and associativity): Let ∗ satisfy
(13) and (14). Then

R ◦∗(S ◦∗ T ) = (R ◦∗ S) ◦∗ T,

R �∗(S �∗ T ) = (R �∗ S) �∗ T,

R �∗(S �∗ T ) = (R ◦∗ S) �∗ T,

(R �∗ S) �∗ T = R �∗(S ◦∗ T ).

Proof: Using associativity of ◦ and properties (13) and
(14), we get

R ◦∗(S ◦∗ T ) = R∗ ◦ (S∗ ◦ T ) = (R∗ ◦ S∗) ◦ T =
= (R ◦∗ S)∗ ◦ T = (R ◦∗ S) ◦∗ T.

Likewise, using R �(S � T ) = (R �S) � T , we get

R �∗(S �∗ T ) = R∗ �(S � T ∗) = (R∗ � S) � T ∗ =
= (R �∗ S) �∗ T,

and using R �(S � T ) = (R ◦ S) � T , we get

R �∗(S �∗ T ) = R∗ �(S∗ � T ) = (R∗ ◦ S∗) � T =
= (R∗ ◦ S)∗ � T = (R ◦∗ S) �∗ T.

The fourth equality is symmetrical to the third one.

Theorem 3 (products and distributivity): Let ∗ satisfy
(13) and (14). Then(⋂

i Ri

) ◦∗ S ⊆ ⋂
i(Ri ◦∗ S), R ◦∗(⋂i Si) ⊆

⋂
i(R ◦∗ Si),(⋃

i Ri

) ◦∗ S =
⋃

i(Ri ◦∗ S), R ◦∗(⋃i Si

)
=

⋃
i(R ◦∗ Si),⋃

i(Ri �∗ S) ⊆ (⋂
i Ri

)
�∗ S, R �∗

(⋂
i Si

)
=

⋂
i(R �∗ Si),(⋃

i Ri

)
�∗ S =

⋂
i(Ri �∗ S),

⋃
i(R �∗ Si) ⊆ R �∗

(⋃
i Si

)
,(⋂

i Ri

)
�∗ S =

⋃
i(Ri �∗ S),

⋃
i(R �∗ Si) ⊆ R �∗

(⋂
i Si

)
,⋂

i(Ri �∗ S) ⊆ (⋃
i Ri

)
�∗ S, R �∗

(⋃
i Si

)
=

⋂
i(R �∗ Si).

Proof: All assertions can be proved by using the
distributivity in classical case. For example(⋃

i Ri

)
�∗ S =

(⋃
i Ri

)∗
� S =

(⋃
i R∗

i

)
� S =

=
⋂

i(R
∗
i � S) =

⋂
i(Ri �∗ S).



Theorem 4 (products and inverse relations): Let ∗ satisfy
(13) and (14). Then(

R ◦∗ S∗)−1 =
(
S−1 ◦∗ R−1

)∗
,(

R �∗ S
)−1 = S−1 �∗ R−1,(

R �∗ S
)−1 = S−1 �∗ R−1.

Proof: All assertions can be proved by using the
properties of inverse relations in classical case. For instance,
in case of the the first one, we have(

R ◦∗ S∗)−1 =
(
R∗ ◦ S∗)−1 =

(
S∗)−1 ◦ (

R∗)−1 =

=
(
S−1

)∗ ◦ (
R−1

)∗ =
((

S−1
)∗ ◦ R−1

)∗ =

=
(
S−1 ◦∗ R−1

)∗
.

For products and their behavior w.r.t. a fuzzy equality
(similarity) ≈ defined by

P1 ≈ P2 =
∧

〈u,v〉∈U×V

(
P1(u, v) ↔ P2(u, v)

)
,

we need the following lemma.

Lemma 5: Let v =
∧

a∈L(a → a∗), then

v ⊗ (b → c) ≤ b∗ → c∗

for all b, c ∈ L.

Proof: → is antitone in the first argument, and ⊗ is
monotone in both of its arguments. Thus, we can write

v ⊗ (b → c) ≤ v ⊗ (b∗ → c).

Therefore, we need to prove v ⊗ (b∗ → c) ≤ b∗ → c∗. By
adjointness property we get v ≤ (b∗ → c) → (b∗ → c∗),
which is true because c → c∗ ≤ (b∗ → c) → (b∗ → c∗) and
v =

∧
a∈L(a → a∗) ≤ c → c∗.

Theorem 6 (products and similarity):
Let v =

∧
a∈L(a → a∗) and ∗ satisfy (13) and (14). Then

v ⊗ (R1 ≈ R2) ⊗ (S1 ≈ S2) ≤ (R1 ◦∗ S1) ≈ (R2 ◦∗ S2),

v ⊗ (R1 ≈ R2) ⊗ (S1 ≈ S2) ≤ (R1 �∗ S1) ≈ (R2 �∗ S2),

v ⊗ (R1 ≈ R2) ⊗ (S1 ≈ S2) ≤ (R1 �∗ S1) ≈ (R2 �∗ S2).

Proof: First, we prove that

v ⊗ (R1 ≈ R2) ≤ R∗
1 ≈ R∗

2.

Using Lemma 5, we can write

v ⊗ (R1 ≈ R2) ≤
∧

x,y v ⊗ (R1(x, y) ↔ R2(x, y)) ≤
≤ ∧

x,y(R1(x, y)∗ ↔ R2(x, y)∗) =

= R∗
1 ≈ R∗

2.

Using the previous inequality,

v ⊗ (R1 ≈ R2) ⊗ (S1 ≈ S2) ≤ (R∗
1 ≈ R∗

2) ⊗ (S1 ≈ S2) ≤
≤ (R∗

1 ◦ S1) ≈ (R∗
2 ◦ S2) =

= (R1 ◦∗ S1) ≈ (R2 ◦∗ S2).

Proofs of the remaining claims are similar.

v w x y z

p1 0.25 0.50 0.50 0.00 0.25
p2 1.00 0.75 1.00 1.00 0.75
p3 0.75 1.00 0.75 1.00 0.50
p4 0.50 0.75 0.00 0.75 0.00

Fig. 2. Data table with fuzzy attributes and B(X, Y, I)

IV. APPLICATIONS OF HEDGE-BASED COMPOSITIONS

A. Concept Lattices With Hedges

Concept lattices [10] are lattice-ordered hierarchies of
conceptual clusters hidden in object-attribute data. Concept
lattices with hedges [6], [8] are, roughly speaking, particu-
lar concept lattices, where the hedges serve as parameters
controlling the number of clusters extracted from data with
graded attributes. In this section, we recall basic notions
of concept lattices with hedges and show that the concept-
forming operators [5], [6], [8] are particular cases of com-
position of fuzzy relations with hedges.

Let X and Y be sets of objects and attributes, respectively,
I be a binary fuzzy relation between X and Y with I(x, y)
being interpreted as a degree to which object x ∈ X has
attribute y ∈ Y . The triplet 〈X,Y, I〉 is called a data table
with fuzzy attributes and can be seen as a table with rows
corresponding to objects from X , columns corresponding
to attributes from Y , and table entries being truth degrees
I(x, y), see Fig. 2 (left) for example.

Let ∗X and ∗Y be hedges on L. For fuzzy sets A ∈ LX

(fuzzy set of objects), B ∈ LY (fuzzy set of attributes) we
define fuzzy sets A↑ ∈ LY (fuzzy set of attributes shared
by all objects from A) and B↓ ∈ LX (fuzzy set of objects
sharing all attributes from B) by

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
, (16)

B↓(x) =
∧

y∈Y

(
B(y)∗Y → I(x, y)

)
. (17)

Operators ↓, ↑ are the concept-forming operators sending
fuzzy sets of attributes to fuzzy sets of objects and vice versa.
Note that ↓, ↑ form a Galois connection with hedges [6], [8].

With 〈X,Y, I〉 playing the role of an input data table, put

B(X∗X , Y ∗Y , I) = {〈A,B〉 |A↑ = B and B↓ = A}. (18)

Moreover, for 〈A1, B1〉, 〈A2, B2〉 ∈ B(X∗X , Y ∗Y , I), put

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (19)

〈B(X∗X , Y ∗Y , I),≤〉 is called a (fuzzy) concept lattice with
hedges ∗X and ∗Y induced by 〈X,Y, I〉 [6], [8]. For ∗Y being
identity, we write only B(X∗X , Y, I); if both ∗X and ∗Y are
identities, we write B(X,Y, I), etc.

Elements 〈A,B〉 of B(X∗X , Y ∗Y , I) are naturally in-
terpreted as concepts (clusters) hidden in the input data
represented by I . Namely, A↑ = B and B↓ = A say that
B is the collection of all attributes shared by all objects
from A, and A is the collection of all objects sharing all



B(X∗1 , Y, I) B(X∗2 , Y, I)

B(X∗3 , Y, I) B(X∗4 , Y, I)
Fig. 3. Concept lattices with hedges

attributes from B. These conditions formalize the definition
of a concept as developed in Port-Royal logic; A and B
are called the extent and the intent of the concept 〈A,B〉,
respectively, and represent the collection of all objects and all
attributes covered by 〈A,B〉. The ordering ≤ defined by (19)
models a subconcept-superconcept hierarchy. For details, we
refer to [4], [5], [6], [8].

Example 3: Let X = {p1, p2, p3, p4} be a set of objects
representing people taking part of a survey. Let Y = {v, w,
x, y, z} be a set of the following socio-economic attributes: v
– high salary; w – high monthly spending; x – high savings;
y – expensive insurance; z – high purchasing power. The data
table in Fig. 2 (left) defines a binary fuzzy relation I ∈ LX×Y

among objects and attributes. Suppose that our structure of
truth degrees is the five-element Łukasiewicz algebra. If both
∗X and ∗Y are identities, the resulting concept lattice has 45
formal concepts. The hierarchy of the concepts is depicted
in Fig. 2 (right). Different choices of hedges allow us to have
smaller hierarchies of concepts, focusing thus on concepts
which are more relevant. For instance, if we let ∗Y be identity
and let ∗X be ∗1, . . . , ∗4 from Fig. 1, we obtain four concept
lattices B(X∗i , Y, I) which are depicted in Fig. 3.

Consider now the operator ↑ defined by (16). Take a fuzzy
set A ∈ LX of objects. Furthermore, take a set Z = {z} and
define a binary fuzzy relation R ∈ LZ×X by R(z, x) = A(x)
(x ∈ X). Note that R can also be seen as a “fuzzy set of
objects” to which an object x ∈ X belongs to a degree
R(z, x). Using (11) and (16), we clearly have

A↑(y) =
∧

x∈X

(
A(x)∗X → I(x, y)

)
=

=
∧

x∈X

(
R(z, x)∗X → I(x, y)

)
=

(
R �∗ I

)
(z, y).

Again, R �∗ I ∈ LZ×Y is a fuzzy relation representing, in
fact, a fuzzy set of attributes. Therefore, A↑ can be seen as
a result of the �∗-composition of R and I .

Dually, for any fuzzy set B ∈ LY of attributes, we can
define S ∈ LY ×Z by S(y, z) = B(y) (y ∈ Y ). Then,
using (12) and (17),

B↓(x) =
∧

y∈Y

(
B(y)∗Y → I(x, y)

)
=

=
∧

y∈X

(
S(y, z)∗Y → I(x, y)

)
=

(
I �∗ S

)
(x, z),

i.e. B↑ can be seen as a result of the �∗-composition of I
and S. Therefore, the concept-forming operators can be seen
as a particular case of compositions of fuzzy relations with
hedges.

B. Threshold-Based Compositions

The ordinary �-product of fuzzy relations can be modified
in order to account for a natural requirement of including a
threshold in definition of R �S. Namely, for threshold δ ∈ L,
one can put

(R �δ S)(x, z) =
∧

y∈Y,R(x,y)≥δ S(y, z).

That is, (R �δ S)(x, z) is a truth degree of “for every y: if
x and y are R-related to degree at least δ then y and z
are S-related”. Alternatively, (R �δ S)(x, z) is the degree to
which z is related to every y for which R(x, y) ≥ δ. A
similar idea is used in the framework of concept lattices
in [18]. Note that if R and S are crisp relations and
δ = 1, R �δ S coincides with the ordinary �-composition of
ordinary (bivalent) relations. Therefore, like R � S, R �δ S
is a generalization of the ordinary �-product of (bivalent)
relations, but a one which is different from R � S.

Now, both � given by (11) and �δ are definable using �∗.
Namely, as mentioned above, if ∗ is the identity on L, R � S
coincides with R �∗ S. Furthermore, one can easily check the
following theorem.

Theorem 7: If ∗ is globalization (6), R �δ S coincides with
(δ → R) �∗ S.

We stop our visit to threshold-inspired compositions by
noting that analogous observations can be made with the
other types of relational compositions.

C. Relational Equations With Hedges

We now consider the problem of fuzzy relational equations
[13]. The problem can be described as: Given R and T ,
determine S for which

R � S is (at least approximately) equal to T. (20)

Alternatively, given S and T , determine R. We denote by

U � S = T, R � U = T

a fuzzy relational equation, where the unknown relation is R
and S, respectively. Now, due to limited scope, we present
the criteria of solvability of fuzzy relational equations for the
particular case where � = ◦∗ and where exact equality is
required in (20).

First, we need the following lemma which shows the
criteria of solvability of fuzzy relational equations with ◦-
composition. The result is well-known, see [13] for L = [0, 1]
and [4] for the general case.



Lemma 8: A fuzzy relational equation U ◦ S = T has a
solution iff (S � T−1)−1 is a solution.

Theorem 9: A fuzzy relational equation R ◦∗ U = T has
a solution iff (R∗)−1 � T is a solution.

Proof: The result follows directly from Lemma 8.
Indeed, using the properties of inverse relations we get
R ◦∗ U = T is equivalent to U−1 ◦ (R∗)−1 = T−1.
Therefore, if R ◦∗ U = T has solution, Lemma 8 implies
that U−1 =

(
(R∗)−1 � T

)−1
is a solution of U−1◦(R∗)−1 =

T−1, i.e. (R∗)−1 � T is a solution of R ◦∗ U = T .

For fuzzy relational equation U ◦∗ S = T we start with the
following result which immediately follows from definitions.

Theorem 10: R is a solution of U ◦∗ S = T iff R∗ is a
solution of U ◦ S = T iff R∗ is a solution of U ◦∗ S = T .

Theorem 10 shows an interesting fact. Let ∗ be global-
ization. Then R∗ is a crisp relation, i.e. R∗(x, y) = 0 or
R∗(x, y) = 1 for any x, y. Therefore, due to Theorem 10,
U ◦∗ S = T has a solution if and only if the ordinary fuzzy
relational equation U ◦ S = T has a solution which is a
crisp relation. In general, U ◦∗ S = T has a solution if and
only if the ordinary fuzzy relational equation U ◦S = T has
a solution R for which R(x, y) ∈ {a∗ | a ∈ L}. Therefore,
solvability of U ◦∗ S = T can be regarded as solvability of
the ordinary U ◦S = T with an additional constraint imposed
by the hedge ∗. The following theorem provides criteria of
solvability of U ◦∗ S = T .

Theorem 11: A fuzzy relational equation U ◦∗ S = T has
a solution iff (S � T−1)−1 is a solution.

Proof: Since U ◦∗ S = U∗ ◦ S, we see that if U is
a solution then U∗ ≤ (S � T−1)−1 (use adjointness and
standard manipulation). Due to (4), U∗ ≤ (S � T−1)−1

is equivalent to U∗ ≤ (
(S � T−1)−1

)∗
. Therefore, T =

U ◦∗ S = U∗◦S ≤ (
(S � T−1)−1

)∗◦S ≤ (S � T−1)−1◦S ≤
T , which shows that (S � T−1)−1 ◦∗ S = T .

Example 4: As an example, let ∗ be globalization and
consider Łukasiewicz operations on L = [0, 1]. Let S and

T be represented by matrices

(
0.4
0.8

)
and

(
0.5
0.3

)
. One can

check using Lemma 8 that U ◦ S = T has a solution.
For example, one such solution is (S � T−1)−1 with the

representing matrix being

(
1 0.7

0.9 0.5

)
, i.e.

(
1 0.7

0.9 0.5

)
◦

(
0.4
0.8

)
=

(
0.5
0.3

)
.

On the other hand, there is no solution of U ◦∗ S = T , i.e.
there is no binary matrix B for which

B ◦
(

0.4
0.8

)
=

(
0.5
0.3

)
.

This follows from Theorem 11 by observing that(
(S � T−1)−1

)∗
whose matrix is

(
1 0
0 0

)
is not a solution.

V. FUTURE RESEARCH

Future research will include the following topics.

– A detailed investigation of properties of compositions
with hedges.

– Decompositions of fuzzy relations where, as shown
above, inclusion of hedges practically means imposing
a constraint on the unknown fuzzy relation such as
requiring that the fuzzy relation is in fact an ordinary
(crisp) relation.

– There is an interesting connection of ◦-composition
with hedges to fuzzy attribute implications [7]. Namely,
models of particular theories of the logic fuzzy attribute
implications are just fixed points of operators defined by
compositions of fuzzy relations with hedges.

– As mentioned above, concept lattices with hedges [6],
[8] are based on a �-composition with hedges. We sup-
pose that for other types of fuzzy concept lattices, see
[11], employment of hedges yields a feasible approach
in which hedges will play a similar role as in [6], [8].
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ativizations. GÖDEL ’96 – Logical Foundations of Mathematics,
Computer Sciences and Physics, Lecture Notes in Logic vol. 6,
Springer-Verlag 1996, 23–33.

[2] Bandler W., Kohout L. J.: Semantics of implication operators and fuzzy
relational products. Int. J. Man-Machine Studies 12 (1980), 89–116.

[3] Bandler W., Kohout L. J.: Mathematical relations. In: M. G. Singh
et al. (Eds.): International Encyclopedia of Systems and Control.
Pergamon Press, Oxford, 1985, pp. 4000–4008.

[4] Belohlavek R.: Fuzzy Relational Systems: Foundations and Principles.
Kluwer Academic/Plenum Publishers, New York, 2002.
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