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Abstract. We study rules A ⇒ B describing attribute dependencies
in tables over domains with similarity relations. A ⇒ B reads “for any
two table rows: similar values of attributes from A imply similar values
of attributes from B”. The rules generalize ordinary functional depen-
dencies in that they allow for processing of similarity of attribute val-
ues. Similarity is modeled by reflexive and symmetric fuzzy relations.
We show a system of Armstrong-like derivation rules and prove its com-
pleteness (two versions). Furthermore, we describe a non-redundant basis
of all rules which are true in a data table and present an algorithm to
compute bases.

1 Introduction and Related Work

Introduction. Rules of the form A ⇒ B where A and B are collections of at-
tributes have been studied in several areas of computer science. We are interested
in their role as describing dependencies known as functional dependencies [2, 12].
The interpretation of an ordinary functional dependence A ⇒ B in a given data
table D is the following: any two table rows in D which have the same values of
attributes from A have also the same values of attributes from B.

In a paper by 29 leading experts in database systems [1], it has been pointed
out that one of the important future topics in database research is management
of uncertainty. In particular, one should extend existing tools to allow for im-
precision. For instance, not only exact matches but also approximate matches of
data items, i.e. matches w.r.t. some underlying similarity, need to be taken into
account in the very foundations of data processing. From this point of view, it
seems necessary to extend the notion and interpretation of classical functional
dependencies so as to take into account similarity in attribute values. A nat-
ural idea is to interpret a functional dependence A ⇒ B as follows: any two
objects which have similar values of attributes from A have also similar values
of attributes from B.
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Table 1. Data table: there are no non-trivial ordinary functional dependencies but
there are approximate dependencies

dist. diam. weight moons
Mercury 57.9 4878 0.056 0
Venus 108.2 12103 0.815 0
Earth 149.6 12714 1.000 1
Mars 227.9 6787 0.107 2
Jupiter 778.3 134700 317.700 39
Saturn 1427.0 120000 95.200 30
Uranus 2870.0 50800 14.660 21
Neptune 4496.7 48600 17.230 8
Pluto 5900.0 2300 0.002 1

As an illustrative example, consider a table from Tab. 1 describing planets
of our solar system. The table contains the following attributes: distance from
sun (in thousands of kilometers), equatorial diameter (in kilometers), weight (in
weights of Earth), number of known moons ; and objects Mercury, Venus, . . . As
one can see, there are no non-trivial ordinary functional dependencies in the data
table. However, one can see that with an intuitive notion of similarity, there are
dependencies saying that similar values of some attributes imply similar values in
other attributes. For instance, similar distance from sun implies similar number
of moons. On the other hand, Uranus and Neptune serve as a counterexample
to a dependency saying that similar diameter implies similar number of moons.
Needless to say, a precise meaning the above described dependencies depends on
the definition of the similarity relations and the definition of validity of a func-
tional dependency involving similarity relations. We come back to this example
in Section 6.

One can think of many other examples of functional dependencies over do-
mains with similarity relations and there is a question of an appropriate frame-
work to put this idea into work. A feasible option is offered by fuzzy logic [11].
Suppose a domain Dy (i.e., the set of all values) of each attribute y is equipped
with a fuzzy similarity ≈y (a particular fuzzy relation assigning to any values
a, b ∈ Dy a degree a ≈y b ∈ [0, 1] to which a is similar to b). Then one may con-
sider formulas A ⇒ B with A and B being fuzzy sets of attributes, and the fol-
lowing meaning of A ⇒ B: for any two objects x1, x2, if the degree x1[y] ≈y x2[y]
of similarity of their y-values x1[y], x2[y] ∈ Dy is at least A(y) for each attribute
y, then for each attribute y′ the degree x1[y′] ≈y′ x2[y′] is at least B(y′). There-
fore, degrees A(y) ∈ [0, 1] and B(y) ∈ [0, 1] act as thresholds for similarities in
attribute values. It is easily seen that this approach extends the classical one.
Namely, if A and B are crisp sets, i.e. A(y) ∈ {0, 1} and B(y) ∈ {0, 1} for each
y ∈ Y , and each ≈y is an ordinary equality then the above meaning coincides
with the meaning of attribute dependencies.

In the present paper, we introduce a concept of a functional dependence and
its interpretation in data tables over domains with similarities. We present a sys-
tem of axioms (deduction rules) and show its completeness as well as its graded
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completeness. We describe non-reduntant bases of all functional dependencies
which are true in a data table and present an algorithm for their computation.

Related Work. For an overview of modeling uncertainty and imprecision in data
engineering and databases we refer to [6]. Various aspects of functional dependen-
cies over domains equipped with similarity relations have already been studied,
see e.g. [13, 14, 15], a good overview is [15]. Compared to our notion of a func-
tional dependence and its validity, neither of these approaches does allow for
using thresholds (see above). Therefore, our dependencies have more expressive
capability. For instance, we can have dependencies like “age similarity in degree
at least 0.7 and income similarity in degree at least 0.9 implies similarity in life
insurance costs in degree 0.5” which is quite reasonable rule since it captures the
possibly different influences of age and income on the conclusion concerning sim-
ilarity in life insurance costs. Furthermore, we describe bases and an algorithm
for their computation which the above-cited works did not.

2 Preliminaries

Fuzzy logic and fuzzy set theory are formal frameworks for a manipulation of a
particular form of imperfection called fuzziness (vagueness). For an introduction
to fuzzy logic we refer to [3, 9, 11]. In this section, we recall some concepts we need.

Contrary to classical logic, fuzzy logic uses a scale L of truth degrees, a
most common choice being L = [0, 1] (real unit interval) or some subchain of
[0, 1]. This enables us to consider intermediate truth degrees of propositions, e.g.
“x1 is similar to x2” has a truth degree 0.8, indicating that the proposition is
almost true. In addition to L, one has to pick an appropriate collection of logical
connectives (implication, conjunction, . . . ). A general choice covering almost
all particular structures used in applications is a complete residuated lattice
with a truth-stressing hedge (shortly, a hedge) [9], i.e. a structure L = 〈L, ∧, ∨,
⊗, →, ∗, 0, 1〉 such that 〈L, ∧, ∨, 0, 1〉 is a complete lattice with 0 and 1 being
the least and greatest element of L, respectively; ⊗ is commutative, associative,
and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L; ⊗ and → satisfy so-called adjointness:
a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L; hedge ∗ satisfies 1∗ = 1, a∗ ≤ a,
(a → b)∗ ≤ a∗ → b∗, a∗∗ = a∗. Elements a of L are called truth degrees. ⊗ and
→ are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. Hedge
∗ is a (truth function of) logical connective “very true”. The above properties
have natural logical interpretations [9].

A common choice of L is a structure with L = [0, 1] (unit interval), ∧ and
∨ being minimum and maximum. Three most important pairs of ⊗ and → are
�Lukasiewicz: a⊗b = max(a+b−1, 0), a → b = min(1−a+b, 1); Gödel (minimum):
a ⊗ b = min(a, b), a → b = 1 for a ≤ b and a → b = b for a > b; Goguen
(product): a ⊗ b = a · b, a → b = 1 for a ≤ b and a → b = b

a for a > b. Another
common choice is L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗
given by ak ⊗ al = amax(k+l−n,0) and the corresponding → given by ak → al =
amin(n−k+l,n). Such an L is called a finite �Lukasiewicz chain. Another possibility
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is a finite Gödel chain which consists of L and restrictions of Gödel operations
on [0, 1] to L. Two boundary cases of (truth-stressing) hedges are (i) identity, i.e.
a∗ = a (a ∈ L); (ii) globalization: a∗ = 1 for a = 1, and a∗ = 0 for a �= 1.

Having L, we define usual notions: an L-set (fuzzy set) A in universe U is a
mapping A : U → L, A(u) being interpreted as “the degree to which u belongs to
A”. If U = {u1, . . . , un} then A can be denoted by A = {a1/u1, . . . ,

an/un} mean-
ing that A(ui) equals ai for each i = 1, . . . , n. For brevity, we write {. . . , u, . . . }
instead of {. . . , 1/u, . . . }. Let LU denote the collection of all L-sets in U . Op-
erations with L-sets are defined in the usual way, i.e. componentwise [11]. An
L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X . Crisp L-sets can
be identified with ordinary sets. For a ∈ L and A ∈ LX , a ⊗ A ∈ LX is defined
by (a ⊗ A)(x) = a ⊗ A(x).

Given A, B ∈ LU , we define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
, (1)

which generalizes the classical subsethood relation “⊆”. S(A, B) represents a
degree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1.
As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .

A binary L-relation ≈ in U , i.e. a mapping ≈: U × U → L, is called reflexive
if for each u ∈ U we have u ≈ u = 1; symmetric if for each u, v ∈ U we have
u ≈ v = v ≈ u; transitive if for each u, v, w ∈ U we have (u ≈ v) ⊗ (v ≈
w) ≤ (u ≈ w); L-equivalence if it is reflexive, symmetric, and transitive. We
will use reflexive and symmetric L-relations to represent similarity on domains
of attribute values.

Throughout the rest of the paper, L denotes an arbitrary complete residuated
lattice with a hedge.

3 Functional Dependencies over Domains with Similarity
Relations

3.1 Functional Dependencies and Their Validity

Suppose Y is a finite set of attributes. A (fuzzy) functional dependence (over
attributes Y ) is an expression A ⇒ B, where A, B ∈ LY are fuzzy sets of
attributes. We use also “FD” for “functional dependence”.

Functional dependencies will be evaluated in the following data tables: A
data table over domains with similarity relations is a tuple

D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉, where

– X is a non-empty set (of objects, table rows),
– Y is a non-empty finite set (of attributes, table columns),
– for each y ∈ Y , Dy is a non-empty set (of values of attribute y) and ≈y is a

binary fuzzy relation in Dy which is reflexive and symmetric (similarity),
– T is a mapping assigning to each x ∈ X and y ∈ Y a value T (x, y) ∈ Dy

(value of attribute y on object x).
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D always denotes some data table over domains with similarity relations with
its components denoted as above, A ⇒ B always denotes a FD.

Remark 1. (1) D can be seen as a table with rows and columns corresponding to
x ∈ X and y ∈ Y , respectively, and with table entries containing values T (x, y) ∈
Dy. Moreover, each domain Dy is equipped with an additional information about
similarity of elements from Dy.

(2) Consider L = {0, 1} (case of classical logic). If each ≈y is an equality (i.e.
a ≈y b = 1 iff a = b), then D can be identified with what is called a relation on
relation scheme Y with domains Dy (y ∈ Y ) [12].

(3) We may assume that attributes from Y are numbered, i.e. Y = {y1, . . . ,
yn}. Then, for x ∈ X and Z ⊆ Y , x[Z] denotes a tuple of values T (x, y) for
y ∈ Z. For instance, if Y = {y1, . . . , y10} and Z = {y2, y3, y10}, then x[Z] =
〈T (x, y2), T (x, y3), T (x, y10)〉. Moreover, we denote x[{y}] by x[y] and identify it
with T (x, y).

We want to consider A ⇒ B true in D if “for any two objects x1, x2 ∈ X : if
x1 and x2 have similar values on attributes from A then x1 and x2 have similar
values on attributes from B”. In general, we will consider a degree a ∈ L to which
A ⇒ B is true in D, with a = 1 meaning that A ⇒ B is (fully) true. Define
first for a given D, objects x1, x2 ∈ X , and a fuzzy set C ∈ LY of attributes a
degree x1(C) ≈ x2(C) to which x1 and x2 have similar values on attributes from
C (agree on attributes from C) by

x1(C) ≈ x2(C) =
∧

y∈Y

(
C(y) → (x1[y] ≈y x2[y])

)
. (2)

That is, x1(C) ≈ x2(C) is truth degree of “for each attribute y ∈ Y : if y belongs
to C then the value x1[y] of x1 on y is similar to the value x2[y] of x2 on y”. Then,
validity of a FD is captured by the following definition. A degree ||A ⇒ B||D to
which A ⇒ B is true in D is defined by

||A ⇒ B||D =
∧

x1,x2∈X

(
(x1(A) ≈ x2(A))∗ → (x1(B) ≈ x2(B))

)
. (3)

Remark 2. (1) ||A ⇒ B||D is a truth degree of “for any objects x1, x2 ∈ X : if it
is true that x1 and x2 have similar values on attributes from A then x1 and x2
have similar values on attributes from B”.

(2) If A and B are crisp sets (i.e. A(y) ∈ {0, 1} and B(y) ∈ {0, 1} for each
y ∈ Y ) then A and B may be considered as ordinary sets and A ⇒ B may be
seen as an ordinary FD. Then, if ≈y is a crisp equality (i.e., a ≈y b = 1 iff a = b
and a ≈y b = 0 iff a �= b), x1(A) ≈ x2(A) = 1 iff x1[A] = x2[A] and similarly
for B. Therefore, ||A ⇒ B||D = 1 iff A ⇒ B is true in D in the usual sense of
validity of ordinary FDs.

(3) We now show that for a FD A ⇒ B, degrees A(y) ∈ L and B(y) ∈ L act
as thresholds. This is best seen when ∗ is globalization, i.e. 1∗ = 1 and a∗ = 0
for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1 (see [9]), we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a �≤ b.
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Therefore, ||A ⇒ B||D = 1 means that proposition “for any objects x1, x2 ∈ X :
if for each attribute y ∈ Y , A(y) ≤ (x1[y] ≈y x2[y]), then for each attribute
y′ ∈ Y , B(y′) ≤ (x1[y′] ≈y x2[y′])” is (fully) true. As a particular example, if
A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0 for y �∈ YA) B(y) = b for y ∈ YB ⊆ Y
(and B(y) = 0 for y �∈ YB), the proposition becomes “for any objects x1, x2 ∈ X :
if for each attribute y ∈ YA, x1[y] is similar to x2[y] in degree at least a, then
for each attribute y′ ∈ YB , x1[y′] is similar to x2[y′] in degree at least b”. That
is, having A and B fuzzy sets allows for a rich expressibility of relationships
between attributes which is why we want A and B to be fuzzy sets in general.

3.2 Semantic Entailment

We are going to define the meaning of “A ⇒ B follows from a collection T of
FDs”. Since FDs may be valid to various degrees, we assume that, in general, T
encompasses FDs with their degrees of validity. That is, we assume that T is a
fuzzy set of FDs and that T (C ⇒ D), i.e. degree to which C ⇒ D belongs to
T , is a degree of validity of C ⇒ D, cf. also [8]. This covers the case when T is
crisp (i.e. T (C ⇒ D) = 1 or T (C ⇒ D) = 0), i.e. a given FD either is assumed
valid or not; then we write A ⇒ B ∈ T if T (A ⇒ B) = 1 and A ⇒ B �∈ T if
T (A ⇒ B) = 0.

For a fuzzy set T of fuzzy FDs, the set Mod(T ) of all models of T is defined by

Mod(T ) = {D | for each A, B ∈ LY : T (A ⇒ B) ≤ ||A ⇒ B||D},

where D stands for an arbitrary data table over domains with similarities. That
is, D ∈ Mod(T ) means that for each FD A ⇒ B, a degree to which A ⇒ B holds
in D is higher than or at least equal to a degree T (A ⇒ B) prescribed by T .
Particularly, for a crisp T , Mod(T )={D | for each A ⇒ B ∈ T : ||A ⇒ B||D = 1}.

A degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from a fuzzy
set T of functional dependencies is defined by

||A ⇒ B||T =
∧

D∈Mod(T ) ||A ⇒ B||D.

That is, ||A ⇒ B||T is a truth degree of “A ⇒ B is true in all models of T ”.

Lemma 1. For A, B ∈ LY , a data table D over domains with similarities, and
c ∈ L we have

c ≤ ||A ⇒ B||D iff ||A ⇒ c ⊗ B||D = 1. (4)

Proof. Sketch: it can be shown that c ≤ ||A ⇒ B||D iff c → ||A ⇒ B||D = 1 iff
||A ⇒ c ⊗ B||D = 1.

Lemma 1 enables us to reduce the concept of a model of a fuzzy set of FDs to the
concept of a model of an ordinary set of FDs, and to reduce the concept of se-
mantic entailment from a fuzzy set of FDs to the concept of semantic entailment
from an ordinary set of FDs:
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Lemma 2. Let T be a fuzzy set of FDs and A, B ∈ LY . Define an ordinary set
c(T ) of FDs by

c(T ) = {A ⇒ T (A ⇒ B) ⊗ B | A, B ∈ LY and T (A ⇒ B) ⊗ B �= ∅}. (5)

Then we have

Mod(T ) = Mod(c(T )), (6)
||A ⇒ B||T = ||A ⇒ B||c(T ), (7)

and thus

||A ⇒ B||T =
∨

{c ∈ L | ||A ⇒ c ⊗ B||T = 1}, (8)
||A ⇒ B||T =

∨
{c ∈ L | ||A ⇒ c ⊗ B||c(T ) = 1}. (9)

Proof. Using definitions and Lemma 1.

Note that due to (9), the concept of a degree of entailment from a fuzzy set of
FDs can be reduced to entailment in degree 1 from a set of FDs.

4 Complete System of Rules for Functional Dependencies

We now introduce an axiomatic system for reasoning with FDs and prove its
completeness in two versions. First, we prove that a FD A ⇒ B is provable from
an ordinary set T of FDs iff A ⇒ B semantically follows from T in degree 1 (com-
pleteness). Second, we introduce a concept of a degree |A ⇒ B|T of provability of
a FD A ⇒ B from a fuzzy set T of FDs and show that |A ⇒ B|T = ||A ⇒ B||T
(graded completeness, see [8]).

4.1 Axioms and Some Derived Rules

Our axiomatic system consists of the following deduction rules.

(Ax) infer A ∪ B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A ⇒ B infer c∗ ⊗ A ⇒ c∗ ⊗ B

for each A, B, C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood as
usual deduction rules: having FDs which are of the form of FDs in the input part
(the part preceding “infer”) of a rule, a rule allows us to infer the corresponding
FD in the output part (the part following “infer”) of a rule.

Remark 3. (1) Rules (Ax) and (Cut) are taken from [10]. A difference from [10]
is that A, B, C, D are fuzzy sets in (Ax) and (Cut) while in [10], A, B, C, D are
ordinary sets.

(2) Rule (Mul) is a new rule in our fuzzy setting.

A FD A ⇒ B is called provable from a set T of FDs, written T � A ⇒ B, if there
is a sequence ϕ1, . . . , ϕn of FDs such that ϕn is A ⇒ B and for each ϕi we either
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have ϕi ∈ T or ϕi is inferred (in one step) from some of the preceding FDs (i.e.,
ϕ1, . . . , ϕi−1) using some deduction rule (Ax)–(Mul). A deduction rule “from
ϕ1, . . . , ϕn infer ϕ” (ϕi, ϕ are FDs) is said to be derivable from (Ax)–(Mul) if
{ϕ1, . . . , ϕn} � ϕ.

Lemma 3. If “from ϕ1, . . . , ϕn infer ϕ” is a rule derivable from the ordinary
Armstrong axioms (see [12]) then replacing symbols of sets by symbols of fuzzy
sets, the resulting rule is derivable from (Ax) and (Cut).

Proof. It follows from [10] that each deduction rule derivable from the ordinary
Armstrong axioms is derivable from (Axc) and (Cutc) where (Axc) and (Cutc)
result from (Ax) and (Cut) by replacing fuzzy sets by ordinary sets. Now, observe
that replacing ordinary sets with fuzzy sets in any proof from (Axc) and (Cutc),
we get a proof from (Ax) and (Cut).

Remark 4. Lemma 3 shows that, for instance, the following deduction rules are
derivable from (Ax) and (Cut):

(Ref) infer A ⇒ A,
(Wea) from A ⇒ B infer A ∪ C ⇒ B,
(Add) from A ⇒ B and A ⇒ C infer A ⇒ B ∪ C,
(Pro) from A ⇒ B ∪ C infer A ⇒ B,
(Tra) from A ⇒ B and B ⇒ C infer A ⇒ C,

for each A, B, C, D ∈ LY .

4.2 Completeness

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” is said to be sound if

Mod({ϕ1, . . . , ϕn}) ⊆ Mod({ϕ}),

i.e. if each model of all ϕ1, . . . , ϕn is also a model of ϕ.

Lemma 4. Each of the rules (Ax)–(Mul) is sound.

Proof. Omitted due to lack of space (proof is straightforward from definitions).

Let T be a set of FDs. T is called syntactically closed if T � A ⇒ B iff A ⇒
B ∈ T , i.e. if T = {A ⇒ B | T � A ⇒ B}. T is called semantically closed if
||A ⇒ B||T = 1 iff A ⇒ B ∈ T , i.e. if T = {A ⇒ B | ||A ⇒ B||T = 1}.

Lemma 5. Let T be a set of FDs. If T is semantically closed then T is syntac-
tically closed.

Proof. Sketch: First it can be shown that a set T of FDs is syntactically closed iff
we have: A∪B ⇒ A ∈ T ; if A ⇒ B ∈ T and B∪C ⇒ D ∈ T then A∪C ⇒ D ∈ T ;
if A ⇒ B ∈ T then c∗ ⊗ A ⇒ c∗ ⊗ B ∈ T , for each A, B, C, D ∈ LY , and c ∈ L.
These conditions are satisfied for if “from ϕ1, . . . , ϕn infer ϕ” is one of (Ax)–
(Mul), then if ϕ1, . . . ϕn ∈ T , we have Mod(T ) ⊆ Mod({ϕ1, . . . ϕn}) ⊆ Mod({ϕ})
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by soundness of (Ax)–(Mul). This says each model of T is a model of ϕ, i.e.
||ϕ||T = 1. Since T is semantically closed, i.e. T = {A ⇒ B | ||A ⇒ B||T = 1},
we get ϕ ∈ T .

Lemma 6. Let T be a set of FDs, let both Y and L be finite. If T is syntactically
closed then T is semantically closed.

Proof. Sketch: Let T be syntactically closed. In order to show that T is seman-
tically closed, it suffices to show {A ⇒ B | ||A ⇒ B||T = 1} ⊆ T . We prove this
by showing that if A ⇒ B �∈ T then A ⇒ B �∈ {A ⇒ B | ||A ⇒ B||T = 1}. By
Lemma 4, since T is syntactically closed, it is closed under all of the rules which
result from Armstrong axioms (and thus also their consequences) by replacing
sets with fuzzy sets. Let thus A ⇒ B �∈ T . To see A ⇒ B �∈ {A ⇒ B | ||A ⇒
B||T = 1}, we show that there is D ∈ Mod(T ) which is not a model of A ⇒ B.
For this purpose, let first A+ be the largest fuzzy set C such that A ⇒ C ∈ T .
A+ exists. Namely, V = {C | A ⇒ C ∈ T } is non-empty since A ⇒ A ∈ T by
(Ref), V is finite by finiteness of Y and L, and for A ⇒ C1, . . . , A ⇒ Cn ∈ T ,
we have A ⇒

⋃n
i=1 Ci ∈ T by a repeated use of (Add). Now, take a data ta-

ble D with X = {x1, x2} such that for y ∈ Y we have: if A+(y) = 1 then
Dy = {a}, T (x1, y) = T (x2, y) = a, a ≈y a = 1; if A+(y) �= 1 then Dy = {a, b},
T (x1, y) = a, T (x2, y) = b, a ≈y a = b ≈y b = 1, a ≈y b = b ≈y a = A+(y).
Then for each y ∈ Y , ≈y is reflexive and symmetric (and even transitive).

Now, it can be shown that D is a model of T but not of A ⇒ B (details
omitted due to lack of space).

We thus have completeness of (Ax)–(Mul).

Theorem 1 (completeness). Let L and Y be finite. Let T be a set of FDs.
Then

T � A ⇒ B iff ||A ⇒ B||T = 1.

Proof. Sketch: Denote by syn(T ) the least syntactically closed set of FDs which
contains T . It can be shown that syn(T ) = {A ⇒ B | T � A ⇒ B}. Furthermore,
denote by sem(T ) the least semantically closed set of FDs which contains T . It
can be shown that sem(T ) = {A ⇒ B | ||A ⇒ B||T = 1}. To prove the claim,
we need to show syn(T ) = sem(T ). As syn(T ) is syntactically closed, it is also
semantically closed by Lemma 6 which means sem(syn(T )) ⊆ syn(T ). Therefore,
by T ⊆ syn(T ) we get

sem(T ) ⊆ sem(syn(T )) ⊆ syn(T ).

In a similar manner we get syn(T ) ⊆ sem(T ), showing syn(T ) = sem(T ). The
proof is complete.

4.3 Graded Completeness

Theorem 1 says that for an ordinary set T and a FD A ⇒ B, A ⇒ B follows from
T in degree 1 iff A ⇒ B is provable from T . A question is whether for a fuzzy
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set T , a degree to which A ⇒ B follows from T can be somehow approximated
using a suitable notion of a proof [8, 9]. In this section, we will see that this is
possible, i.e. that (Ax)–(Mul) obey even completeness in degrees.

For a fuzzy set T of FDs and for A ⇒ B define a degree |A ⇒ B|T ∈ L to
which A ⇒ B is provable from T by

|A ⇒ B|T =
∨

{c ∈ L | c(T ) � A ⇒ c ⊗ B}, (10)

where c(T ) is defined by (5). The following theorem shows that the concept of
a degree of provability coincides with that of a degree of semantic entailment.

Theorem 2 (graded completeness). Let L and Y be finite. Then for every
fuzzy set T of fuzzy attribute implications and A ⇒ B we have |A ⇒ B|T =
||A ⇒ B||T .

Proof. Consequence of Lemma 2 and Theorem 1.

5 Computing Non-redundant Bases of All True
Functional Dependencies

In the previous sections, we showed that semantic entailment from sets of
functional dependencies can be characterized syntactically (by a suitably de-
fined notion of provability / provability degree), i.e. we showed a completeness
of (Ax)–(Mul). In knowledge engineering, completeness is used still in another
sense: “complete” means “fully describing all dependencies which are true in
a given data table / model”. Therefore, call a set T of functional dependencies
complete in D if

||A ⇒ B||T = ||A ⇒ B||D (11)

for each A ⇒ B (degree to which A ⇒ B semantically follows from T equals
degree to which A ⇒ B is true in D). Thus, a set T which is complete in
D conveys all information about dependencies in D via the concept of semantic
entailment. Moreover, if T is complete in D and no proper subset of T is complete
in D, we call T a non-redundant basis of D. In other words, a non-redundant
basis T is a complete set from which one cannot remove any A ⇒ B ∈ T without
losing completeness. From this point of view, we are interested in finding non-
redundant bases because they are basically “the minimal sets of FDs conveying
the maximal information about D”.

Note if T is complete w.r.t. D, it follows immediately from Theorem 1 and
the definition of completeness w.r.t. D that an arbitrary FD A ⇒ B can be
proved from T using (Ax)–(Mul) iff A ⇒ B is true in D in degree 1.

In the sequel we show a way to compute a non-redundant basis of any D.
Since the proofs are technically involved, we omit them due to lack of space.

Given an L-set B of attributes, we define a binary L-relation Eq(B) on X
(rows of D) as follows

(Eq(B))(x, x′) = x(B) ≈ x′(B). (12)
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Eq(B) is a binary L-relation indicating similarity of table rows on attributes
from B, cf. (2). For any binary L-relation Sim on X we define an L-set At(Sim)
of attributes by

(At(Sim))(y) =
∧

x,x′(Sim(x, x′) → (x[y] ≈y x′[y])). (13)

If Sim is interpreted as a similarity relation, (At(Sim))(y) is a truth degree
of “any table rows which are Sim-similar are also Sim-similar on the value of
attribute y”. Finally, we define an operator C: LY → LY (i.e., C is an operator
on L-sets of attributes) as follows

C(B) = At((Eq(B))∗). (14)

In words, (C(B))(y) is a truth degree of proposition: “any table rows which are
(very) similar on attributes from B are also similar on the value of attribute y”.
It can be shown that Eq, At, and C given by (12), (13), and (14), respectively,
have the following properties (for the notions involved, see e.g. [7]):

Theorem 3. Eq and At form a Galois connection. C is a closure operator. ��

It can be shown that the set T = {B ⇒ C(B) | B ∈ LY } of functional depen-
dencies is complete in D. However, T is not interesting since it is too large and
redundant. Nevertheless, T contains non-redundant bases which are based on
the following concept.

For any M ∈ LY (i.e., M is an fuzzy set of attributes) define a data table
DM = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉 where

– X = {x, x′},
– for y ∈ Y , if M(y) = 1 then Dy = {a}, a ≈y a = 1, T (x, y) = a, and

T (x′, y) = a,
– for y ∈ Y , if M(y) �= 1 then Dy = {a, b}, a ≈y a = b ≈y b = 1, a ≈y b =

b ≈y a = M(y), T (x, y) = a, and T (x′, y) = b.

Given a data table D over domains with similarities, P ⊆ LY (a system of fuzzy
sets of attributes) is called a system of pseudo-intents of D if for each P ∈ LY

we have:

P ∈ P iff P �= C(P ) and ||Q ⇒ C(Q)||DP = 1
for each Q ∈ P with Q �= P .

The following assertion says that in order to get a non-redundant basis it
suffices to pick from {B ⇒ C(B) | B ∈ LY } only those FDs where B’s belong to
a system of pseudo-intents:

Theorem 4. Let D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉 be a data table over do-
mains with similarities, P be a system of pseudo-intents of D. Then T = {P ⇒
C(P ) | P ∈ P} is a non-redundant basis of D. ��

We now show a way to compute a system of pseudo-intents in an efficient way.
For brevity, we discuss only particular case for a hedge ∗ being globalization, i.e.
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a∗ = 1 for a = 1 and a∗ = 0 for a �= 1. First, if ∗ is globalization then C can be
described as follows

(C(B))(y) =
∧

{x[y] ≈y x′[y] | x < x′, and
for any y′ ∈ Y : B(y′) ≤ x[y′] ≈y x′[y′]}.

Furthermore, define an operator clT ∗ : LY → LY (operator on fuzzy sets of
attributes) by putting for each Z ∈ LY :

ZT ∗
= Z ∪

⋃
{B ⊗ S(A, Z)∗ | A ⇒ B ∈ T and A �= Z},

ZT ∗
n =

{
Z if n = 0,

(ZT ∗
n−1)T ∗

if n ≥ 1,

clT ∗(Z) =
⋃∞

n=0 ZT ∗
n .

The existence and uniqueness of P is characterized by the following assertion.

Theorem 5. Let L be a finite linearly ordered residuated lattice with global-
ization, D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉 be a data table over domains with
similarities. Then

(i) there is a unique system P of pseudo-intents of D;
(ii) for T = {P ⇒ C(P ) | P ∈ P}, clT ∗ is a closure operator and

P ∪ {C(M) | M ∈ LY } is the set of all its fixpoints. ��

Hence, in case of globalization and finite linearly ordered structure of truth
degrees, one can find P as a subset of fixpoints of a closure operator. This can
be done with polynomial time delay by the following algorithm (inspired by
Ganter’s NextClosure algorithm [7]):

Algorithm 1.
Input: D (data table over dom. with similarity relations).
Output: P (system of pseudo-intents).

B := ∅
if B �= C(B): add B to P
while B �= Y :

T := {P ⇒ C(P ) | P ∈ P}
B := B+ (B+ is lectically smallest fixed point of clT∗

which is a successor of B)
if B �= C(B): add B to P

The efficiency of the previous algorithm depends on computation of clT ∗(Z). A
straightforward method to compute clT ∗(Z) leads to an algorithm similar to the
CLOSURE algorithm known from database systems [12]. An improved version
of CLOSURE, also known as LINCLOSURE [12], can also be adopted in our
setting. This and related topics will be discussed in a forthcoming paper.
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6 Illustrative Examples

Consider again Tab. 1. To get a data table D = 〈X, Y, {〈Dy, ≈y〉 | y ∈ Y }, T 〉
over domains with similarity relations, denote by X and Y the sets of planets
and their attributes, respectively, put Dy = [0, ∞) for each y ∈ Y , and consider
Fig. 1. Fig. 1 depicts similarities on the domains Dy. The similarities ≈y on
domains Dy can be described as follows: As a structure of truth degrees, take a
real unit interval [0, 1] equipped with �Lukasiewicz operations and globalization,
and denote by Eb

a a fuzzy set in [0, ∞) defined by

Eb
a(x) =

⎧
⎨

⎩

1 if x < a,
b−x
b−a if x ≥ a and x ≤ b,

0 otherwise.

Eb
a expresses that if the distance between two reals drops below a, then the reals

are indistinguishable (with respect to Eb
a); if the distance exceeds b, the reals

are fully distinct (with respect to Eb
a); reals with distances between a and b are

given proportional truth degrees between 1 and 0. Thus, for any real numbers
x1 and x2 we can define their Eb

a-similarity degree to be Eb
a(|x1 − x2|), i.e. the

degree to which |x1 − x2| belongs to Eb
a. This says that two objects are similar

to a degree to which is it true that the objects are “close”. Now, the curves
depicted in Fig. 1 correspond to similarities defined as follows:

x1 ≈s x2 = E500
50 (|x1 − x2|), x1 ≈d x2 = E20000

5000 (|x1 − x2|),
x1 ≈w x2 = E10

1 (|x1 − x2|), x1 ≈m x2 = E5
1(|x1 − x2|),

where s ∈ Y denotes distance from sun, d ∈ Y denotes diameter, w ∈ Y denotes
weight, and m ∈ Y denotes number of moons. For instance, if x1 denotes Earth
and x2 denotes Mars then “x1[m] ≈m x2[m] = 1” (i.e., proposition “Earth and
Mars have similar number of moons” is fully true), “x1[s] ≈m x2[s]

.= 0.93” (i.e.,
proposition “Earth and Mars have similar distance from sun” is true in degree
0.93), etc. Note that “being similar” is subjective and that we can replace the
above similarities by other ones.

For technical reasons, we round the exact values of L = [0, 1] from ≈y (y ∈ Y )
down to values of L = {0, 0.1, 0.2, . . . , 0.9, 1}. This way we obtain a finite linearly
ordered structure of truth degrees with globalization suitable to generate the
non-redundant basis of D. In our case, the basis obtained by Algorithm 1 contains
the following formulas (for brevity, we do not repeat attributes from premises,

50 500

1 distance

5000 20000

1 diameter

1 10

1 weight

1 5

1 moons

Fig. 1. Similarity relations
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i.e. instead of FD A ⇒ B, we list a FD A ⇒ B′ where B′ results from B by
deleting all y with A(y) = B(y)):

{s, 0.8/d, w, m}⇒{d}, {0.9/s, 0.8/d, w, 0.7/m}⇒{m},

{0.8/s, d, w, 0.7/m}⇒{s, m}, {0.7/s, 0.8/d, w, m}⇒{0.9/s},

{0.1/s}⇒{0.7/s, 0.8/d, w, 0.7/m}, {0.7/d, 0.8/w}⇒{0.8/d},

{0.6/d, w, 0.8/m}⇒{m}, {0.6/d, 0.9/w}⇒{w, 0.7/m},

{0.4/d}⇒{0.6/d, 0.8/w}, {0.1/d}⇒{0.3/d},

{0.1/w}⇒{0.6/d, 0.8/w}, {0.1/m}⇒{0.6/d, w, 0.7/m}.

A FD A ⇒ B holds in D in degree to which follows (syntactically/semantically)
from the above-mentioned FDs. One can see that all of the FDs of the basis have
a natural meaning in the data table D.

For instance, {0.1/m} ⇒ {0.6/d, w, 0.7/m}, says “if the numbers of moons are
similar in degree (at least) 0.1, then the diameters are similar in degree 0.6, the
weights are fully similar, and the numbers of moons are similar in degree 0.7”.
Taking into account the underlying similarities, the formula can be read:

“if |x[m] − x[m]| ≤ 4 then |x[d] − x′[d]| ≤ 11000,
|x[w] − x′[w]| ≤ 1, and |x[m] − x′[m] ≤ 2|”,

i.e., the implication says: “if the difference between numbers of moons of x and
x′ is at most 4 then the difference between their diameters is at most 11000,
the difference between their weights is at most one weight of Earth, and the
difference between numbers of moons is at most 2.

7 Concluding Remarks

We introduced functional dependencies for data tables over domains with sim-
ilarity relations. We presented basic semantic notions (validity, entailment), a
complete axiom system, description of non-redundant bases of all functional de-
pendencies which are true in a given table, and presented an algorithm for its
computation. In addition to that, in a full version of this paper, we will show

– other complete systems of derivation rules;
– algorithm and related results for other hedges than globalization;
– complete proofs of our theorems.

Note that in a related paper [5] we show a close connection to so-called attribute
implications which makes it possible to reduce some problems considered here
to analogous problems of fuzzy attribute implications. Our future research will
focus on:

– algorithms for various problems of FDs ([12] is a good survey of problems
and algorithms in classical FDs);

– further types of data dependencies in a fuzzy setting, like multivalued de-
pendencies (cf. [6]).
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3. Bělohlávek R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York, 2002.
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